Skip to main content

Bispecific Antibodies

  • Chapter
  • First Online:
Introduction to Antibody Engineering

Part of the book series: Learning Materials in Biosciences ((LMB))

Abstract

In the past three decades, bispecific antibodies have taken center stage as one of the most fiercely expanding classes of the antibody-based therapeutic reagents. Apart of performing two tasks in one, their inherently linked two specificities were found to be able to initiate novel biological effects, unpreceded in biological phenomena such as engaging effector cells to act against tumor cells, replacing a missing link in an enzyme cascade, or acting as molecular Trojan horses to exert their activity in otherwise inaccessible cellular compartments, tissues, and organs. These unique modes of action have triggered the interest of the protein engineering community to harvest the versatility and plasticity of immunoglobulin-based molecules and to design a plethora of fusion-based, homodimeric and heterodimeric architectures, as well as to refine the parameters of their heterologous expression, downstream processing, and analytics. With these developments, the design of the molecular species optimally functional for a particular biological situation appears to be at reach even for multispecific and multivalent formats, limited only by researcher’s imagination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaplon H, Reichert JM. Antibodies to watch in 2019. MAbs. 2019;11(2):219–38. https://doi.org/10.1080/19420862.2018.1556465.

    Article  CAS  PubMed  Google Scholar 

  2. Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019;18(8):585–608. https://doi.org/10.1038/s41573-019-0028-1.

    Article  CAS  PubMed  Google Scholar 

  3. Steinwand M, Droste P, Frenzel A, Hust M, Dübel S, Schirrmann T. The influence of antibody fragment format on phage display based affinity maturation of IgG. MAbs. 2014;6(1):204–18. https://doi.org/10.4161/mabs.27227.

    Article  PubMed  Google Scholar 

  4. Li D, Wang L, Maziuk BF, Yao X, Wolozin B, Cho YK. Directed evolution of a picomolar-affinity, high-specificity antibody targeting phosphorylated tau. J Biol Chem. 2018;293(31):12081–94. https://doi.org/10.1074/jbc.RA118.003557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tiller KE, Tessier PM. Advances in antibody design. Annu Rev Biomed Eng. 2015;17(1):191–216. https://doi.org/10.1146/annurev-bioeng-071114-040733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xiao X, Douthwaite JA, Chen Y, et al. A high-throughput platform for population reformatting and mammalian expression of phage display libraries to enable functional screening as full-length IgG. MAbs. 2017;9(6):996–1006. https://doi.org/10.1080/19420862.2017.1337617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nisonoff A, Wissler FC, Lipman LN. Properties of the major component of a peptic digest of rabbit antibody. Science. 1960;132(3441):1770–1. https://doi.org/10.1126/science.132.3441.1770

  8. Porter RR. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959;73:119–26. https://doi.org/10.1042/bj0730119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nisonoff A, Rivers MM. Recombination of a mixture of univalent antibody fragments of different specificity. Arch Biochem Biophys. 1961;93(2):460–2. https://doi.org/10.1016/0003-9861(61)90296-X.

    Article  CAS  PubMed  Google Scholar 

  10. Hämmerling U, Aoki T, Wood HA, Old LJ, Boyse EA, De Harven E. New visual markers of antibody for electron microscopy [17]. Nature. 1969;223(5211):1158–9. https://doi.org/10.1038/2231158a0.

    Article  PubMed  Google Scholar 

  11. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7. https://doi.org/10.1038/256495a0.

    Article  PubMed  Google Scholar 

  12. Brennan M, Davison PF, Paulus H. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science. 1985;229(4708):81–3. https://doi.org/10.1126/science.3925553

  13. Glennie MJ, McBride HM, Worth AT, Stevenson GT. Preparation and performance of bispecific F(ab’ gamma)2 antibody containing thioether-linked fab’ gamma fragments. J Immunol. 1987;139(7):2367–75.

    CAS  PubMed  Google Scholar 

  14. De Lau WBM, Van Loon AE, Heije K, Valerio D, Bast BJEG. Production of hybrid hybridomas based on HATs-neomycin double mutants. J Immunol Methods. 1989;117:1. https://doi.org/10.1016/0022-1759(89)90111-7.

    Article  PubMed  Google Scholar 

  15. Milstein C, Cuello AC. Hybrid hybridomas and their use in immunohistochemistry. Nature. 1983;305(5934):537–40. https://doi.org/10.1038/305537a0.

    Article  CAS  PubMed  Google Scholar 

  16. Staerz UD, Bevan MJ. Hybrid hybridoma producing a bispecific monoclonal antibody that can focus effector T-cell activity. Proc Natl Acad Sci U S A. 1986;83(5):1453–7. https://doi.org/10.1073/pnas.83.5.1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karpovsky B, Titus JA, Stephany DA, Segal DM. Production of target-specific effector cells using hetero-cross-linked aggregates containing anti-target cell and anti-Fcγ, receptor antibodies. J Exp Med. 1984;160(6):1686–701. https://doi.org/10.1084/jem.160.6.1686.

    Article  CAS  PubMed  Google Scholar 

  18. Perez P, Hoffman RW, Shaw S, Bluestone JA, Segal DM. Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. Nature. 1985;316(6026):354–6. https://doi.org/10.1038/316354a0.

    Article  CAS  PubMed  Google Scholar 

  19. Skerra A, Plückthun A. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science. 1988. https://doi.org/10.1126/science.3285470

  20. Bird RE, Hardman KD, Jacobson JW, et al. Single-chain antigen-binding proteins. Science. 1988;242(4877):423–6. https://doi.org/10.1126/science.3140379

  21. Coloma MJ, Morrison SL. Design and production of novel tetravalent bispecific antibodies. Nat Biotechnol. 1997;15(2):159–63. https://doi.org/10.1038/nbt0297-159.

    Article  CAS  PubMed  Google Scholar 

  22. Arndt KM, Müller KM, Plückthun A. Factors influencing the dimer to monomer transition of an antibody single-chain Fv fragment. Biochemistry. 1998;37(37):12918–26. https://doi.org/10.1021/bi9810407.

    Article  CAS  PubMed  Google Scholar 

  23. Kortt AA, Malby RL, Caldwell JB, et al. Recombinant anti-sialidase single-chain variable fragment antibody: characterization, formation of dimer and higher-molecular-mass multimers and the solution of the crystal structure of the single-chain variable fragment/sialidase complex. Eur J Biochem. 1994;221(1):151–7. https://doi.org/10.1111/j.1432-1033.1994.tb18724.x.

    Article  CAS  PubMed  Google Scholar 

  24. Ridgway JBB, Presta LG, Carter P. “Knobs-into-holes” engineering of antibody C H 3 domains for heavy chain heterodimerization. Protein Eng. 1996;9(7):617–21. https://doi.org/10.1016/1380-2933(96)80685-3.

    Article  CAS  Google Scholar 

  25. Atwell S, Ridgway JBB, Wells JA, Carter P. Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J Mol Biol. 1997;270(1):26–35. https://doi.org/10.1006/jmbi.1997.1116.

    Article  CAS  PubMed  Google Scholar 

  26. Merchant AM, Zhu Z, Yuan JQ, et al. An efficient route to human bispecific IgG. Nat Biotechnol. 1998;16(7):677–81. https://doi.org/10.1038/nbt0798-677.

    Article  CAS  PubMed  Google Scholar 

  27. Von Kreudenstein TS, Escobar-Carbrera E, Lario PI, et al. Improving biophysical properties of a bispecific antibody scaffold to aid developability: quality by molecular design. MAbs. 2013;5(5):646–54. https://doi.org/10.4161/mabs.25632.

    Article  Google Scholar 

  28. Gunasekaran K, Pentony M, Shen M, et al. Enhancing antibody fc heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG. J Biol Chem. 2010;285(25):19637–46. https://doi.org/10.1074/jbc.M110.117382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Skegro D, Stutz C, Ollier R, et al. Immunoglobulin domain interface exchange as a platform technology for the generation of Fc heterodimers and bispecific antibodies. J Biol Chem. 2017;292(23):9745–59. https://doi.org/10.1074/jbc.M117.782433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krah S, Schröter C, Eller C, et al. Generation of human bispecific common light chain antibodies by combining animal immunization and yeast display. Protein Eng Des Sel. 2017;30(4):291–301. https://doi.org/10.1093/protein/gzw077.

    Article  CAS  PubMed  Google Scholar 

  31. Lindhofer H, Mocikat R, Steipe B, Thierfelder S. Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J Immunol. 1995;155(1):219–25.

    CAS  PubMed  Google Scholar 

  32. Lewis SM, Wu X, Pustilnik A, et al. Generation of bispecific IgG antibodies by structure-based design of an orthogonal fab interface. Nat Biotechnol. 2014;32(2):191–8. https://doi.org/10.1038/nbt.2797.

    Article  CAS  PubMed  Google Scholar 

  33. Schaefer W, Regula JT, Bahner M, et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc Natl Acad Sci. 2011;108(27):11187–92. https://doi.org/10.1073/pnas.1019002108.

    Article  PubMed  Google Scholar 

  34. Dietrich S, Gross AW, Becker S, et al. Constant domain-exchanged Fab enables specific light chain pairing in heterodimeric bispecific SEED-antibodies. Biochim Biophys Acta – Proteins Proteomics. 2020;1868(1). https://doi.org/10.1016/j.bbapap.2019.07.003

  35. Aalberse RC, Stapel SO, Schuurman J, Rispens T. Immunoglobulin G4: An odd antibody. Clin Exp Allergy. 2009;39(4):469–77. https://doi.org/10.1111/j.1365-2222.2009.03207.x.

    Article  CAS  PubMed  Google Scholar 

  36. Kolfschoten MVDN, Schuurman J, Losen M, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science. 2007;317(5844):1554–7. https://doi.org/10.1126/science.1144603

  37. Rispens T, Ooijevaar-De Heer P, Bende O, Aalberse RC. Mechanism of immunoglobulin G4 fab-arm exchange. J Am Chem Soc. 2011;133(26):10302–11. https://doi.org/10.1021/ja203638y.

    Article  CAS  PubMed  Google Scholar 

  38. Labrijn AF, Meesters JI, De Goeij BECG, et al. Efficient generation of stable bispecific IgG1 by controlled fab-arm exchange. Proc Natl Acad Sci U S A. 2013;110(13):5145–50. https://doi.org/10.1073/pnas.1220145110.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Spiess C, Merchant M, Huang A, et al. Bispecific antibodies with natural architecture produced by co-culture of bacteria expressing two distinct half-antibodies. Nat Biotechnol. 2013;31(8):753–8. https://doi.org/10.1038/nbt.2621.

    Article  CAS  PubMed  Google Scholar 

  40. Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2009;69(12):4941–4. https://doi.org/10.1158/0008-5472.CAN-09-0547.

    Article  CAS  PubMed  Google Scholar 

  41. Shimabukuro-Vornhagen A, Gödel P, Subklewe M, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6(1). https://doi.org/10.1186/s40425-018-0343-9

  42. Bargou R, Leo E, Zugmaier G, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008;321(5891):974–7. https://doi.org/10.1126/science.1158545

  43. Nuñez-Prado N, Compte M, Harwood S, et al. The coming of age of engineered multivalent antibodies. Drug Discov Today. 2015;20(5):588–94. https://doi.org/10.1016/j.drudis.2015.02.013.

    Article  CAS  PubMed  Google Scholar 

  44. Rogala B, Freyer CW, Ontiveros EP, Griffiths EA, Wang ES, Wetzler M. Blinatumomab: enlisting serial killer T-cells in the war against hematologic malignancies. Expert Opin Biol Ther. 2015;15(6):895–908. https://doi.org/10.1517/14712598.2015.1041912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hijazi Y, Klinger M, Kratzer A, et al. Pharmacokinetic and Pharmacodynamic relationship of Blinatumomab in patients with non-Hodgkin lymphoma. Curr Clin Pharmacol. 2018;13(1):55–64. https://doi.org/10.2174/1574884713666180518102514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Le Jeune C, Thomas X. Potential for bispecific T-cell engagers: role of blinatumomab in acute lymphoblastic leukemia. Drug Des Devel Ther. 2016;10:757–65. https://doi.org/10.2147/DDDT.S83848.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Offner S, Hofmeister R, Romaniuk A, Kufer P, Baeuerle PA. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol Immunol. 2006;43(6):763–71. https://doi.org/10.1016/j.molimm.2005.03.007.

    Article  CAS  PubMed  Google Scholar 

  48. Ross SL, Sherman M, McElroy PL, et al. Bispecific T cell engager (BiTE®) antibody constructs can mediate bystander tumor cell killing. PLoS One. 2017;12(8). https://doi.org/10.1371/journal.pone.0183390

  49. Reusch U, Duell J, Ellwanger K, et al. A tetravalent bispecific TandAb (CD19/CD3), AFM11, efficiently recruits T cells for the potent lysis of CD19+tumor cells. MAbs. 2015;7(3):584–604. https://doi.org/10.1080/19420862.2015.1029216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hoffmann P, Hofmeister R, Brischwein K, et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer. 2005;115(1):98–104. https://doi.org/10.1002/ijc.20908.

    Article  CAS  PubMed  Google Scholar 

  51. Alegre ML, Peterson LJ, Xu D, et al. A non - activating “humanized” anti - CD3 monoclonal antibody retains immunosuppressive properties in vivo. Transplantation. 1994;57(11):1537–43. https://doi.org/10.1097/00007890-199457110-00001.

    Article  CAS  PubMed  Google Scholar 

  52. Sebastian M, Kuemmel A, Schmidt M, Schmittel A. Catumaxomab: a bispecific trifunctional antibody. Drugs of Today. 2009;45(8):589–97. https://doi.org/10.1358/dot.2009.45.8.1401103.

    Article  CAS  PubMed  Google Scholar 

  53. Borlak J, Länger F, Spanel R, Schöndorfer G, Dittrich C. Immune-mediated liver injury of the cancer therapeutic antibody catumaxomab targeting EpCAM, CD3 and Fcγ receptors. Oncotarget. 2016;7(19):28059–74. https://doi.org/10.18632/oncotarget.8574

  54. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. https://doi.org/10.1056/NEJMoa1504030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dovedi SJ, Mazor Y, Elder M, et al. Abstract 2776: MEDI5752: a novel bispecific antibody that preferentially targets CTLA-4 on PD-1 expressing T-cells. In: AACR; 2018, p. 2776. https://doi.org/10.1158/1538-7445.am2018-2776

  56. Tanaka Y, Sano S, Nieves E, et al. Nonpeptide ligands for human γδ T cells. Proc Natl Acad Sci U S A. 1994;91(17):8175–9. https://doi.org/10.1073/pnas.91.17.8175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Bruin RCG, Veluchamy JP, Lougheed SM, et al. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells. Onco Targets Ther. 2017;7:e1375641. https://doi.org/10.1080/2162402X.2017.1375641.

    Article  Google Scholar 

  58. Vallera DA, Felices M, McElmurry R, et al. IL15 Trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res. 2016;22(14):3440–50. https://doi.org/10.1158/1078-0432.CCR-15-2710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kruse RL, Shum T, Legras X, et al. In situ liver expression of HBsAg/CD3-bispecific antibodies for HBV immunotherapy. Mol Ther - Methods Clin Dev. 2017;7:32–41. https://doi.org/10.1016/j.omtm.2017.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meng W, Tang A, Ye X, et al. Targeting human-cytomegalovirus-infected cells by redirecting T cells using an anti-CD3/anti-glycoprotein B bispecific antibody. Antimicrob Agents Chemother. 2018;62(1). https://doi.org/10.1128/AAC.01719-17

  61. Huang Y, Yu J, Lanzi A, et al. Engineered bispecific antibodies with exquisite HIV-1-neutralizing activity. Cell. 2016;165(7):1621–31. https://doi.org/10.1016/j.cell.2016.05.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li Z, Shen D, Hu S, et al. Pretargeting and bioorthogonal click chemistry-mediated endogenous stem cell homing for heart repair. ACS Nano. 2018;12(12):12193–200. https://doi.org/10.1021/acsnano.8b05892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ziegler M, Wang X, Lim B, et al. Platelet-targeted delivery of peripheral blood mononuclear cells to the ischemic heart restores cardiac function after ischemia-reperfusion injury. Theranostics. 2017;7(13):3192–206. https://doi.org/10.7150/thno.19698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moores SL, Chiu ML, Bushey BS, et al. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res. 2016;76(13):3942–53. https://doi.org/10.1158/0008-5472.CAN-15-2833.

    Article  CAS  PubMed  Google Scholar 

  65. Geuijen CAW, De Nardis C, Maussang D, et al. Unbiased combinatorial screening identifies a bispecific IgG1 that potently inhibits HER3 signaling via HER2-guided ligand blockade. Cancer Cell. 2018;33(5):922–36.e10. https://doi.org/10.1016/j.ccell.2018.04.003

  66. Wu AL, Kolumam G, Stawicki S, et al. Metabolic disease: amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci Transl Med. 2011;3(113). https://doi.org/10.1126/scitranslmed.3002669

  67. Kolumam G, Chen MZ, Tong R, et al. Sustained Brown fat stimulation and insulin sensitization by a humanized bispecific antibody agonist for fibroblast growth factor receptor 1/βKlotho complex. EBioMedicine. 2015;2(7):730–43. https://doi.org/10.1016/j.ebiom.2015.05.028.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li Y, Hickson JA, Ambrosi DJ, et al. Abt-165, a dual variable domain immunoglobulin (dvd-ig) targeting dll4 and vegf, demonstrates superior efficacy and favorable safety profiles in preclinical models. Mol Cancer Ther. 2018;17(5):1039–50. https://doi.org/10.1158/1535-7163.MCT-17-0800.

    Article  CAS  PubMed  Google Scholar 

  69. Foxton RH, Uhles S, Grüner S, Revelant F, Ullmer C. Efficacy of simultaneous VEGF -A/ ANG −2 neutralization in suppressing spontaneous choroidal neovascularization. EMBO Mol Med. 2019;11(5). https://doi.org/10.15252/emmm.201810204

  70. Regula JT, Lundh von Leithner P, Foxton R, et al. Targeting key angiogenic pathways with a bispecific Cross MA b optimized for neovascular eye diseases. EMBO Mol Med. 2017;9(7):985. https://doi.org/10.15252/emmm.201707895

  71. Pernas S, Tolaney SM. HER2-positive breast cancer: new therapeutic frontiers and overcoming resistance. Ther Adv Med Oncol. 2019;11 https://doi.org/10.1177/1758835919833519.

  72. Sampei Z, Igawa T, Soeda T, et al. Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PLoS One. 2013;8(2). https://doi.org/10.1371/journal.pone.0057479

  73. Raso V, Griffin T. Hybrid antibodies with dual specificity for the delivery of ricin to immunoglobulin-bearing target cells. Cancer Res. 1981;41(6):2073–8.

    CAS  PubMed  Google Scholar 

  74. Wolf P, Elsässer-Beile U. Pseudomonas exotoxin a: from virulence factor to anti-cancer agent. Int J Med Microbiol. 2009;299(3):161–76. https://doi.org/10.1016/j.ijmm.2008.08.003.

    Article  CAS  PubMed  Google Scholar 

  75. Yu YJ, Atwal JK, Zhang Y, et al. Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Sci Transl Med. 2014;6(261). https://doi.org/10.1126/scitranslmed.3009835

  76. Wec AZ, Nyakatura EK, Herbert AS, et al. A “Trojan horse” bispecific-antibody strategy for broad protection against ebolaviruses. Science. 2016;354(6310):350–4. https://doi.org/10.1126/science.aag3267

  77. De Goeij BECG, Vink T, Ten Napel H, et al. Efficient payload delivery by a bispecific antibody-drug conjugate targeting HER2 and CD63. Mol Cancer Ther. 2016;15(11):2688–97. https://doi.org/10.1158/1535-7163.MCT-16-0364.

    Article  PubMed  Google Scholar 

  78. Van Roy M, Ververken C, Beirnaert E, et al. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody® ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res Ther. 2015;17(1). https://doi.org/10.1186/s13075-015-0651-0

  79. Steeland S, Puimège L, Vandenbroucke RE, et al. Generation and characterization of small single domain antibodies inhibiting human tumor necrosis factor receptor 1. J Biol Chem. 2015;290(7):4022–37. https://doi.org/10.1074/jbc.M114.617787.

    Article  CAS  PubMed  Google Scholar 

  80. Huston JS, Levinson D, Mudgett-Hunter M, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A. 1988;85(16):5879–83. https://doi.org/10.1073/pnas.85.16.5879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Holliger P, Prospero T, Winter G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci U S A. 1993;90(14):6444–8. https://doi.org/10.1073/pnas.90.14.6444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moore PA, Zhang W, Rainey GJ, et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. 2011;117(17):4542–51. https://doi.org/10.1182/blood-2010-09-306449.

    Article  CAS  PubMed  Google Scholar 

  83. Wu C, Ying H, Grinnell C, et al. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol. 2007;25(11):1290–7. https://doi.org/10.1038/nbt1345.

    Article  CAS  PubMed  Google Scholar 

  84. Steinmetz A, Vallée F, Beil C, et al. CODV-Ig, a universal bispecific tetravalent and multifunctional immunoglobulin format for medical applications. MAbs. 2016;8(5):867–78. https://doi.org/10.1080/19420862.2016.1162932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bostrom J, Haber L, Koenig P, Kelley RF, Fuh G. High affinity antigen recognition of the dual specific variants of Herceptin is entropy-driven in spite of structural plasticity. PLoS One. 2011;6(4). https://doi.org/10.1371/journal.pone.0017887

  86. Wang L, He Y, Zhang G, et al. Retargeting T cells for HER2-positive tumor killing by a bispecific Fv-Fc antibody. PLoS One. 2013;8(9). https://doi.org/10.1371/journal.pone.0075589

  87. Everett KL, Kraman M, Wollerton FPG, et al. Generation of Fcabs targeting human and murine LAG-3 as building blocks for novel bispecific antibody therapeutics. Methods. 2018.

    Google Scholar 

  88. Carter P, Ridgway JBB, Presta LG. ‘Knobs-into-holes’ provides a rational design strategy for engineering antibody CH3 domains for heavy chain heterodimerization. Immunotechnology. 1996;2(1):73. https://doi.org/10.1016/1380-2933(96)80685-3

  89. Davis JH, Aperlo C, Li Y, et al. SEEDbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng Des Sel. 2010;23(4):195–202. https://doi.org/10.1093/protein/gzp094.

    Article  CAS  PubMed  Google Scholar 

  90. Harris KE, Aldred SF, Davison LM, et al. Sequence-based discovery demonstrates that fixed light chain human transgenic rats produce a diverse repertoire of antigen-specific antibodies. Front Immunol. 2018;9(4):889. https://doi.org/10.3389/fimmu.2018.00889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mazor Y, Oganesyan V, Yang C, et al. Improving target cell specificity using a novel monovalent bispecific IgG design. MAbs. 2015;7(2):377–89. https://doi.org/10.1080/19420862.2015.1007816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fischer N, Elson G, Magistrelli G, et al. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nat Commun. 2015;6:6113. https://doi.org/10.1038/ncomms7113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Könning D, Rhiel L, Empting M, et al. Semi-synthetic vNAR libraries screened against therapeutic antibodies primarily deliver anti-idiotypic binders. Sci Rep. 2017;7(1). https://doi.org/10.1038/s41598-017-10513-9

  94. Wang C, Vemulapalli B, Cao M, et al. A systematic approach for analysis and characterization of mispairing in bispecific antibodies with asymmetric architecture. MAbs. 2018;10(8):1226–35. https://doi.org/10.1080/19420862.2018.1511198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The financial support by the Christian Doppler Society, Austrian Federal Ministry for Digital and Economic Affairs, and National Foundation for Research, Technology and Development is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Wozniak-Knopp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wozniak-Knopp, G. (2021). Bispecific Antibodies. In: Rüker, F., Wozniak-Knopp, G. (eds) Introduction to Antibody Engineering. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-54630-4_7

Download citation

Publish with us

Policies and ethics