Skip to main content

Advertisement

Log in

Distinct Angiogenic microRNA-mRNA Expression Profiles Among Subtypes of Lung Adenocarcinoma

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Adenocarcinoma (ADC) represents the most common histological type of non-small cell lung cancer (NSCLC), with a heterogeneous pattern of growth classified as lepidic, acinar, papillary, solid, and micropapillary. For ADC patients there are few available therapeutic options and a valuable therapeutic strategy is represented by angiogenesis inhibitors; however, new reliable biomarkers to identify patients with benefit from anti-angiogenic drugs are needed. We designed a panel of sixteen miRNAs together with six their mRNA targets involved in the angiogenesis pathway and expression analysis was performed by the nCounter System® (NanoString Technologies) in 88 ADC patients: 29 were predominantly lepidic (33%), 26 solid (29.5%), 22 acinar (25%), and for 11 patients the prevalent pattern was papillary (12.5%). When we compared mRNA expression levels with the different histological ADC subtypes we found a significant higher expression of VEGF in papillary and solid than in other subtypes (p = 0.008). Among 16 miRNAs that target the angiogenic mRNA, 4 were significantly downregulated in papillary/solid compared to other groups. Our data suggest a distinct angiogenic miRNA-mRNA expression profile among the subtypes of ADC, with a putative clinical application to stratify patients for anti-angiogenetic drugs. Moreover, the regulation of angiogenic mRNA factors by miRNAs could provide a novel therapeutic approach based on their expression pattern specific for distinct ADC subtypes. Further studies are needed in a larger cohort of patients to confirm our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  Google Scholar 

  2. Travis WD, Brambilla E, Noguchi M, Nicholson A, Geisinger K, Yatabe Y, Ishikawa Y, Wistuba I, Flieder DB, Franklin W, Gazdar A, Hasleton PS, Henderson DW, Kerr KM, Petersen I, Roggli V, Thunnissen E, Tsao M (2012) Diagnosis of lung cancer in small biopsies and cytology: implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society Classification. Arch Pathol Lab Med; Epub ahead of print

  3. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG (2015) WHO classification of Tumours of the lung, pleura, thymus and heart. International Agency for Research on Cancer, Lyon

    Google Scholar 

  4. von der Thusen JH, Tham YS, Pattenden H et al (2013) Prognostic significance of predominant histologic pattern and nuclear grade in resected adenocarcinoma of the lung potential parameters for a grading system. J Thorac Oncol 8:37–44

    Article  Google Scholar 

  5. Clay TD, Do H, Sundararajan V, Moore MM, Conron M, Wright GM, McLachlan SA, Dobrovic A, Russell PA (2014) The clinical relevance of pathologic subtypes in metastatic lung adenocarcinoma. J Thorac Oncol 9:654–663

    Article  CAS  Google Scholar 

  6. Cha MJ, Lee HY, Lee KS, Jeong JY, Han J, Shim YM, Hwang HS (2014) Micropapillary and solid subtypes of invasive lung adenocarcinoma: clinical predictors of histopathology and outcome. J Thorac Cardiovasc Surg 147:921–928

    Article  Google Scholar 

  7. Urer HN, Kocaturk CI, Gunluoglu MZ, Arda N, Bedirhan MA, Fener N, Dincer SI (2014) Relationship between lung adenocarcinoma histological subtype and patient prognosis. Ann Thorac Cardiovasc Surg 20:12–18

    Article  Google Scholar 

  8. Iachina M, Green A, Jakobsen E (2014) The direct and indirect impact of comorbidity on the survival of patients with non-small cell lung cancer: a combination of survival, staging and resection models with missing measurements in covariates. BMJ Open 4:e003846

    Article  Google Scholar 

  9. Alshangiti A, Chandhoke G, Ellis PM (2018) Antiangiogenic therapies in non-small-cell lung cancer. Curr Oncol 25(Suppl 1):S45–S58

    Article  CAS  Google Scholar 

  10. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  CAS  Google Scholar 

  11. Wang J, Chen J, Guo Y, Wang B, Chu H (2017) Strategies targeting angiogenesis in advanced non-small cell lung cancer. Oncotarget 8:53854–53872

    Article  Google Scholar 

  12. Qu J, Zhang Y, Chen X, Yang H, Zhou C, Yang N (2017) Newly developed anti-angiogenic therapy in non-small cell lung cancer. Oncotarget 9:10147–10163

    Article  Google Scholar 

  13. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  CAS  Google Scholar 

  14. Fontanella C, Ongaro E, Bolzonello S, Guardascione M, Fasola G, Aprile G (2014) Clinical advances in the development of novel VEGFR2 inhibitors. Ann Transl Med 2:123

    PubMed  PubMed Central  Google Scholar 

  15. Manzo A, Montanino A, Carillio G, Costanzo R, Sandomenico C, Normanno N, Piccirillo MC, Daniele G, Perrone F, Rocco G, Morabito A (2017) Angiogenesis inhibitors in NSCLC. Int J Mol Sci 18(10)

    Article  Google Scholar 

  16. Rajabi M, Mousa SA (2017) The role of angiogenesis in cancer treatment. Biomedicine 5:2

    Google Scholar 

  17. Viallard C, Larrivée B (2017) Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 20:409–426

    Article  CAS  Google Scholar 

  18. Urbich C, Kuehbacher A, Dimmeler S (2008) Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79:581–588

    Article  CAS  Google Scholar 

  19. Joshi P, Middleton J, Jeon YJ, Garofalo M (2014) MicroRNAs in lung cancer. World J Methodol 4:59–72

    Article  Google Scholar 

  20. Castro D, Moreira M, Gouveia AM, Pozza DH, De Mello RA (2017) MicroRNAs in lung cancer. Oncotarget 8:81679–81685

    Article  Google Scholar 

  21. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272–284

    Article  CAS  Google Scholar 

  22. Chen Y, Gorski DH (2008) Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood 111:1217–1226

    Article  CAS  Google Scholar 

  23. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15:261–271

    Article  Google Scholar 

  24. Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L, Huang M, Shields DJ, Lindquist JN, Lapinski PE, King PD, Weis SM, Cheresh DA (2010) MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 16:909–914

    Article  CAS  Google Scholar 

  25. Landskroner-Eiger S, Moneke I, Sessa WC (2013) miRNAs as modulators of angiogenesis. Cold Spring Harb Perspect Med 3:a006643

    Article  Google Scholar 

  26. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944–13949

    Article  CAS  Google Scholar 

  27. Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB, Zhang Y (2006) MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 1:e116

    Article  Google Scholar 

  28. Kuehbacher A, Urbich C, Dimmeler S (2008) Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci 29:12–15

    Article  CAS  Google Scholar 

  29. Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC, Martelli F (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283:15878–15883

    Article  CAS  Google Scholar 

  30. Suárez Y, Fernández-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, Iruela-Arispe ML, Merkenschlager M, Sessa WC (2008) Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci U S A 105:14082–14087

    Article  Google Scholar 

  31. Suárez Y, Sessa WC (2009) MicroRNAs as novel regulators of angiogenesis. Circ Res 104:442–454

    Article  Google Scholar 

  32. Ghosh A, Dasgupta D, Ghosh A, Roychoudhury S, Kumar D, Gorain M, Butti R, Datta S, Agarwal S, Gupta S, Krishna Dhali G, Chowdhury A, Schmittgen TD, Kundu GC, Banerjee S (2017) MiRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2. Cell Death Dis 8:e2706

    Article  Google Scholar 

  33. Rahmani F, Avan A, Hashemy SI, Hassanian SM (2018) Role of Wnt/β-catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer. J Cell Physiol 233:811–817

    Article  CAS  Google Scholar 

  34. Pan JY, Sun CC, Bi ZY, Chen ZL, Li SJ, Li QQ, Wang YX, Bi YY, Li DJ (2017) miR-206/133b cluster: a weapon against lung cancer? Mol Ther Nucleic Acids 8:442–449

    Article  CAS  Google Scholar 

  35. Korde A, Jin L, Zhang JG, Ramaswamy A, Hu B, Kolahian S, Guardela BJ, Herazo-Maya J, Siegfried JM, Stabile L, Pisani MA, Herbst RS, Kaminski N, Elias JA, Puchalski JT, Takyar SS (2017) Lung endothelial MicroRNA-1 regulates tumor growth and angiogenesis. Am J Respir Crit Care Med 196:1443–1455

    Article  CAS  Google Scholar 

  36. Zhou Y, Li S, Li J, Wang D, Li Q (2017) Effect of microRNA-135a on cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung Cancer. Cell Physiol Biochem 42:1431–1446

    Article  CAS  Google Scholar 

  37. Liu L, Bi N, Wu L, Ding X, Men Y, Zhou W, Li L, Zhang W, Shi S, Song Y, Wang L (2017) MicroRNA-29c functions as a tumor suppressor by targeting VEGFA in lung adenocarcinoma. Mol Cancer 16:50

    Article  Google Scholar 

  38. Ho CS, Noor SM, Nagoor NH (2018) MiR-378 and MiR-1827 regulate tumor invasion, migration and angiogenesis in human lung adenocarcinoma by targeting RBX1 and CRKL, respectively. J Cancer 9:331–345

    Article  Google Scholar 

  39. Zombori T, Nyári T, Tiszlavicz L, Pálföldi R, Csada E, Géczi T, Ottlakán A, Pécsy B, Cserni G, Furák J (2018) The more the micropapillary pattern in stage I lung adenocarcinoma, the worse the prognosis-a retrospective study on digitalized slides. Virchows Arch 472:949–958

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Laura Boldrini, Mirella Giordano and Gabriella Fontanini conceived and designed the experiments; Mirella Giordano performed the experiments; Laura Boldrini wrote the paper; Gabriella Fontanini diagnosed lung cancer; Franca Melfi, and Marco Lucchi performed lung surgery.

Corresponding author

Correspondence to Laura Boldrini.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human Participants

Our study was conducted in accordance with the ethical standards of our institutional research committee and with the 1964 Helsinki declaration.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boldrini, L., Giordano, M., Melfi, F. et al. Distinct Angiogenic microRNA-mRNA Expression Profiles Among Subtypes of Lung Adenocarcinoma. Pathol. Oncol. Res. 26, 1089–1096 (2020). https://doi.org/10.1007/s12253-019-00664-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-019-00664-7

Keywords

Navigation