Skip to main content

Advertisement

Log in

Distribution of Vascular Patterns in Different Subtypes of Renal Cell Carcinoma. A Morphometric Study in Two Distinct Types of Blood Vessels

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

To analyze the presence of mature and immature vessels as a prognostic factor in patients with renal cell carcinoma and propose a classification of renal cancer tumor blood vessels according to morphometric parameters. Tissue samples were obtained from 121 renal cell carcinoma patients who underwent radical nephrectomy. Staining with CD31 and CD34 was used to differentiate between immature (CD31+) and mature (CD34+) blood vessels. We quantified the microvascular density, microvascular area and different morphometric parameters: maximum diameter, minimum diameter, major axis, minor axis, perimeter, radius ratio and roundness. We found that the microvascular density was higher in CD31+ than CD34+ vessels, but CD34+ vessels were larger than CD31+ vessels, as well as being strongly correlated with the ISUP tumor grade. We also identified four vascular patterns: pseudoacinar, fascicular, reticular and diffuse. Pseudoacinar and fascicular patterns were more frequent in clear cell renal cell carcinoma (37.62 and 35.64% respectively), followed by reticular pattern (21.78%), while in chromophobe tumors the reticular pattern predominated (90%). The isolated pattern was present in all papillary tumors (100%). In healthy renal tissue, the pseudoacinar and isolated patterns were differentially found in the renal cortex and medulla respectively. We defined four distinct vascular patterns significantly related with the ISUP tumor grade in renal cell carcinomas. Further studies in larger series are needed in order to validate these results. Analysis of both mature and immature vessels (CD34+ and CD31+) provides additional information when evaluating microvascular density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang B, Ji H, Yan D, Liu S, Shi B (2014) Lack of association of microvessel density with prognosis of renal cell carcinoma: evidence from meta-analysis. Tumor Biol 35(3):2769–2776

    Article  CAS  Google Scholar 

  2. Döme B, Hendrix MJC, Paku S, Tóvári J, Tímár J (2007) Alternative vascularization mechanisms in cancer. Am J Pathol 170(1):1–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Srigley JR, Delahunt B (2009) Uncommon and recently described renal carcinomas. Mod Pathol 22(Suppl 2):S2–23

    Article  PubMed  Google Scholar 

  4. Murphy WM, Grignon DG, Perlman EJ (2004) Tumors of the kidney, bladder, and related urinary structures. American Registry of Pathology, Washington

    Google Scholar 

  5. Delahunt B, Eble JN, McCredie MR, Bethwaite PB, Stewart JH, Bilous AM (2001) Morphologic typing of papillary renal cell carcinoma: comparison of growth kinetics and patient survival in 66 cases. Hum Pathol 32:590–595

    Article  PubMed  CAS  Google Scholar 

  6. Storkel S, Eble JN, Adlakha K et al (1997) Classification of renal carcinoma. Cancer 80:987–989

    Article  PubMed  CAS  Google Scholar 

  7. Thoenes W, Storkel S, Rompelt HJ, Moll R, Baum HP, Werner S (1988) Chromophobe cell renal carcinoma and its variants. A report in 32 cases. J. Pathol 155:277–287

    Article  CAS  Google Scholar 

  8. Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Nat Cancer Inst 94:883–893

    Article  PubMed  Google Scholar 

  9. Grizzi F, Colombo P, Barbieri B et al (2001) Microscopic analysis and significance of vascular architectural complexity in renal cell carcinoma. Clin Cancer Res 7:3305–3307

    PubMed  CAS  Google Scholar 

  10. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis: correlation in invasive breast carcinoma. N Engl J Med 324:1–8

    Article  PubMed  CAS  Google Scholar 

  11. Grizzi F, Ceva-Grimaldi G, Dioguardi N (2001a) Fractal geometry: a useful tool for quantifying irregular lesions in human liver biopsy specimens. Ital J Anat Embryol 106:337–346

    PubMed  CAS  Google Scholar 

  12. Kovacs G, Akhtar M, Beckwith BJ et al (1997) The Heidelberg classification of renal cell tumours. J Pathol 80:992–993

    Google Scholar 

  13. Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, et al (20015). EAU Guidelines on Renal Cell Carcinoma 2014 Update. Eur Urol 67(5): 913–924

  14. Delahunt B, Srigley JR, Montironi R, Egevad L (2014) Advances in renal neoplasia: recommendations from the 2012 International Society of Urological Pathology Consensus Conference. Urology 83(5):969–974

    Article  PubMed  Google Scholar 

  15. Poblet E, González-Palacios F, Jimenez FJ (1996) Different immunoreactivity of endotelial markers in well and poorly differentiated areas of angiosarcomas. Virchows Arch 428:217–221

    PubMed  CAS  Google Scholar 

  16. Yilmazer D, Han U, Onal B (2007) A comparison of the vascular density of VEGF expression with microvascular density determined with CD34 and CD31 staining and conventional prognostic markers in renal cell carcinoma. Int Urol Nephrol 39:691–698

    Article  PubMed  CAS  Google Scholar 

  17. Meert AP, Paesmans M, Martin B, Delmotte P, Berghmans T, Verdebout JM, Lafitte JJ, Mascaux C, Sculier JP (2002) The role of microvessel density on the survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer 87:694–701

    Article  PubMed  PubMed Central  Google Scholar 

  18. Uzzan B, Nicolas P, Cucherat M, Perret GY (2004) Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res 64:2941–2955

    Article  PubMed  CAS  Google Scholar 

  19. Des Guetz G, Uzzan B, Nicolas P, Cucherat M, Morere JF, Benamouzig R, Breau JL, Perret GY (2006) Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br J Cancer 94:1823–1832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ruiz-Saurí A, Valencia-Villa G, Romanenko A, Pérez J, García R, García H, Benavent J, Sancho-Tello M, Carda C, Llombart-Bosch A (2016) Influence of exposure to chronic persistent low-dose ionizing radiation on the tumor biology of clear-cell renal-cell carcinoma. An Immunohistochemical and morphometric study of angiogenesis and vascular related factors. Pathol Oncol Res 22(4):807–815

    Article  PubMed  CAS  Google Scholar 

  21. Joo HJ, Oh DK, Kim YS, Lee KB, Kim SJ (2004) Increased expression of caveolin-1 and microvessel density correlates with metastasis and poor prognosis in clear cell renal cell carcinoma. BJU Int 93:291–296

    Article  PubMed  CAS  Google Scholar 

  22. Nativ O, Sabo E, Reiss A, Wald M, Madjar S, Moskovitz B (1998) Clinical significance of tumor angiogenesis in patients with localized renal cell carcinoma. Urology 51:693–696

    Article  PubMed  CAS  Google Scholar 

  23. Yoshino S, Kato M, Okada K (1995) Prognostic significance of microvessel count in low stage renal cell carcinoma. Int J Urol 2:156–160

    Article  PubMed  CAS  Google Scholar 

  24. MacLennan GT, Bostwick DG (1995) Microvessel density in renal cell carcinoma: lack of prognostic significance. Urology 46:27–30

    Article  PubMed  CAS  Google Scholar 

  25. Minardi D, Lucarini G, Mazzucchelli R, Milanese G, Natali D, Galosi AB, Montironi R, Biagini G, Muzzonigro G (2005) Prognostic role of Fuhrman grade and vascular endothelial growth factor in pT1a clear cell carcinoma in partial nephrectomy specimens. J Urol 174:1208–1212

    Article  PubMed  CAS  Google Scholar 

  26. Anastassiou G, Duensing S, Steinhoff G, Zorn U, Grosse J, Dallmann I, Kirchner H, Ganser A, Atzpodien J (1996) Platelet endothelial cell adhesion molecule-1 (PECAM-1): a potential prognostic marker involved in leukocyte infiltration of renal cell carcinoma. Oncology 53:127–132

    Article  PubMed  CAS  Google Scholar 

  27. Imao T, Egawa M, Takashima H, Koshida K, Namiki M (2004) Inverse correlation of microvessel density with metastasis and prognosis in renal cell carcinoma. Int J Urol 11:948–953

    Article  PubMed  Google Scholar 

  28. Rioux-Leclercq N, Epstein JI, Bansard JY, Turlin B, Patard JJ, Manunta A, Chan T, Ramee MP, Lobel B, Moulinoux JP (2001) Clinical significance of cell proliferation, microvessel density, and CD44 adhesion molecule expression in renal cell carcinoma. Hum Pathol 32:1209–1215

    Article  PubMed  CAS  Google Scholar 

  29. Sabo E, Boltenko A, Sova Y, Stein A, Kleinhaus S, Resnick MB (2001) Microscopic analysis and significance of vascular architectural complexity in renal cell carcinoma. Clin Cancer Res 7:533–537

    PubMed  CAS  Google Scholar 

  30. Schraml P, Struckmann K, Hatz F, Sonnet S, Kully C, Gasser T, Sauter G, Mihatsch MJ, Moch H (2002) VHL mutations and their correlation with tumour cell proliferation, microvessel density, and patient prognosis in clear cell renal cell carcinoma. J Pathol 196:186–193

    Article  PubMed  CAS  Google Scholar 

  31. Cheng S-H, Liu J-M, Liu Q-Y, Luo D-Y, Liao B-.H, Li H, Wang K-J (2014). Prognostic role of microvessel density in patients with renal cell carcinoma: a meta-analysis. Int J Clin Exp Pathol 7(9): 5855–5863

  32. Ferician O, Cimpean AM, Ceasu AM, Dema A, Raica M, Cumpanas A (2016) Heterogeneous vascular patterns in renal cell carcinomas. Pol J Pathol 67(1):46–53

    Article  PubMed  CAS  Google Scholar 

  33. Joshi S, Singh AR, Durden DL (2015) Pan-PI-3 kinase inhibitor SF 1126 shows antitumor and antiangiogenic activity in renal cell carcinoma. Cancer Chemother Pharmacol 75:595–608

    Article  PubMed  CAS  Google Scholar 

  34. Schirner M, Hoffmann J, Menrad A, Schneider MR (1998) Antiangiogenic chemotherapeutic agents: characterization in comparison to their tumor growth inhibition in human renal cell carcinoma models. Clin Cancer Res 4:1331–1336

    PubMed  CAS  Google Scholar 

  35. Travnicek I, Branzovsky H, Kalusova K, Hess O, Holubec L, Pele KB, Ürge T, Hora M (2015) Tissue biomarkers in predicting response to sunitinib treatment of metastatic renal cell carcinoma. Anticancer Res 35:5661–5666

    PubMed  CAS  Google Scholar 

  36. Porta C, Giglione P, Liguigli W, Paglino C (2015) Dovitinib (CHIR258, TKI258): structure, development and preclinical and clinical activity. Future Oncol 11:39–50

    Article  PubMed  CAS  Google Scholar 

  37. Okoń K, Kawa R (2008) Microvascular network in renal carcinomas. Quantitative and tissue microarray immunohistochemical study. Pol J Pathol 59:107–115

    PubMed  Google Scholar 

  38. Tinini T, Rossi F, Claudio PP (2003) Molecular basis of angiogenesis and cancer. Oncogene 22:6549–6556

    Article  CAS  Google Scholar 

  39. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60:1388–1393

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amparo Ruiz-Saurí.

Ethics declarations

Conflict of Interest

We declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Saurí, A., García-Bustos, V., Granero, E. et al. Distribution of Vascular Patterns in Different Subtypes of Renal Cell Carcinoma. A Morphometric Study in Two Distinct Types of Blood Vessels. Pathol. Oncol. Res. 24, 515–524 (2018). https://doi.org/10.1007/s12253-017-0262-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-017-0262-y

Keywords

Navigation