Skip to main content

Advertisement

Log in

Application of Lipid Blend-Based Nanoparticulate Scaffold for Oral Delivery of Antihypertensive Drug: Implication on Process Variables and In Vivo Absorption Assessment

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present study was to formulate and optimize lipid blend-based olmesartan medoxomil (OLM) loaded nanoparticulate scaffolds (NLCs) for enhanced oral bioavailability.

Method

The OLM-NLCs were formulated using dependent variables in different concentrations of solid lipid, liquid lipid, surfactant, and co-surfactant by using melt emulsification combined with ultrasonication technique. The formulations were experimentally optimized using a three-factor, three-level statistical design approach. The formulated OLM-NLCs were evaluated for various pharmaceutical quality evaluation parameters and further optimized formulation (OLM-NLCopt) was assessed for release kinetics, thermal behavior, and in vivo absorption assessment.

Result

The optimized formulation (OLM-NLCopt) showed particle size (138.7 nm), PDI (0.18), and entrapment efficiency (83.65%). The comparative in vitro release study revealed OLM-NLCopt showed significantly higher (p < 0.05) drug release compare to OLM-susp. The in vivo study showed the OLM-NLCopt indicated nearly 3-fold improvement in oral bioavailability vis-a-vis OLM-susp in mice model.

Conclusion

The results of the release study and pharmacokinetic study suggest the potential of OLM-NLCs for improved oral delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alam S, Aslam M, Khan A, Imam SS, Aqil M, Sultana Y, et al. Nanostructured lipid carriers of pioglitazone for transdermal application: from experimental design to bioactivity detail. Drug Deliv. 2016;23(2):601–9.

    Article  Google Scholar 

  2. Aqil M, Kamran M, Ahad A, Imam SS. Development of clove oil based nanoemulsion of olmesartan for transdermal delivery: Box–Behnken design optimization and pharmacokinetic evaluation. J Mol Liq. 2016;214:238–48.

    Article  CAS  Google Scholar 

  3. Atefa M, Rezaeia M, Behrooz R. Preparation and characterization agar based nanocomposite film reinforced by nanocrystalline cellulose. Int J Biol Macromol. 2014;70:537–44.

    Article  Google Scholar 

  4. Baig MS, Ahad A, Aslam M, Imam SS, Aqil M, Ali A. Application of Box–Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: optimization, in vitro release, ocular tolerance, and antibacterial activity. Int J of Biol Macromol. 2016;85:258–70.

    Article  CAS  Google Scholar 

  5. Bhaskar K, Anbu J, Ravichandiran V, Venkateswarlu V, Rao Y. Lipid nanoparticles for transdermal delivery of flurbiprofen: formulation, in vitro, ex vivo and in vivo studies. Lipids Health Dis. 2009;8:6.

    Article  Google Scholar 

  6. Charman WN. Lipids, lipophilic drugs and oral drug delivery—some emerging concepts. J Pharm Sci. 2000;89:967–78.

    Article  CAS  Google Scholar 

  7. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  CAS  Google Scholar 

  8. Dahan A, Hoffman A. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J Control Release. 2008;129:1–10.

    Article  CAS  Google Scholar 

  9. Destro MPP, D'Ospina A, Achiri NCC, Ricci AR, Cagnoni F. Olmesartan medoxomil: recent clinical and experimental acquisitions. Expert Opin Drug Metab Toxicol. 2009;5:1149–57.

    Article  CAS  Google Scholar 

  10. Imam SS, Aqil M, Ahad A, Akhtar M, Sultana Y, Ali A. Formulation by design based risperidone nano soft lipid vesicle as a new strategy for enhanced transdermal drug delivery: in-vitro characterization, and in-vivo appraisal. Mat Sci and Engi C. 2017;75:1198–205.

    Article  CAS  Google Scholar 

  11. Imam SS, Aqil M, Akhtar M, Sultana Y, Ali A. Formulation by design-based proniosome for accentuated transdermal delivery of risperidone: in vitro characterization and in vivo pharmacokinetic study. Drug Deliv. 2015;22:1059–70.

    Article  CAS  Google Scholar 

  12. Jia L, Zhang D, Li Z, Duan C. Nanostructured lipid carriers for parenteral delivery of silybin: biodistribution and pharmacokinetic studies. Colloids Surf B Bioint. 2010;80:213–8.

    Article  CAS  Google Scholar 

  13. Kamran M, Ahad A, Aqil M, Imam SS, Sultana Y, Ali A. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: in vitro characterization and in vivo pharmacokinetic assessment. Int. J. of Pharm. 2016;505:147–58.

    Article  CAS  Google Scholar 

  14. Khan A, Imam SS, Aqil M, Ahad A, Sultana Y, Ali A, et al. Brain targeting of temozolomide via the intranasal route using lipid-based nanoparticles: brain pharmacokinetic and scintigraphic analyses. Mol Pharm. 2016;13:3773–82.

    Article  CAS  Google Scholar 

  15. Laeis PK, Kirch PW. The pharmacokinetic and metabolic profile of olmesartan medoxomil limits the risk of clinically relevant drug interaction. J Hypertens Suppl. 2001;19:S21–32.

    Article  CAS  Google Scholar 

  16. Mandpe L, Pokharkar V. Quality by design approach to understand the process of optimization of iloperidone nanostructured lipid carriers for oral bioavailability enhancement. Pharm Dev Tech. 2015;20(3):320–9.

    Article  CAS  Google Scholar 

  17. Mishra A, Imam SS, Aqil M, Ahad A, Sultana Y, Ameeduzzafar, et al. Carvedilol nano lipid carriers: formulation, characterization and in-vivo evaluation. Drug Deliv. 2016;23(4):1486–94.

    Article  CAS  Google Scholar 

  18. Moghddam SRM, Ahad A, Aqil M, Imam SS, Sultana Y. Formulation and optimization of niosomes for topical diacerein delivery using 3-factor, 3-level Box–Behnken design for the management of psoriasis. Mater Sci Eng: C, Mater Biol Appl. 2016;1(69):789–97.

    Article  CAS  Google Scholar 

  19. Muller RH, Maassen S, Weyhers H, Mehnert W. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target. 1996;4:161–70.

    Article  CAS  Google Scholar 

  20. Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59:522–30.

    Article  Google Scholar 

  21. Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–55.

    Article  CAS  Google Scholar 

  22. Muller RH, Runge S, Ravelli V, Mehnert W, Thuunemann AF, Souto EB. Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals. Int J Pharm. 2006;317(1):82–9.

    Article  CAS  Google Scholar 

  23. Narvekar M, Xue HY, Wong HL. A novel hybrid delivery system: polymer–oil nanostructured carrier for controlled delivery of highly lipophilic drug all-trans-retinoic acid (ATRA). Int J Pharm. 2012;436:721–31.

    Article  CAS  Google Scholar 

  24. O’Driscoll CM, Griffin BT. Biopharmaceutical challenges associated with drugs with low aqueous solubility—the potential impact of lipid-based formulations. Adv Drug Deliv Rev. 2008;60:617–24.

    Article  Google Scholar 

  25. Pardeikea J, Webera S, Haberb T, Wagnerb J, Zarflc HP, Plank H, et al. Development of an itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. Int J Pharm. 2011;419:329–38.

    Article  CAS  Google Scholar 

  26. Patil GB, Patil ND, Deshmukh PK, Patil PO, Bari SB. Nanostructured lipid carriers as a potential vehicle for carvedilol delivery: application of factorial design approach. Art Cells Nanomed Biotech. 2016;44:12–9.

    Article  CAS  Google Scholar 

  27. Paudel A, Ameeduzzafar, Imam SS, Ahmad FJ, Ali A. Formulation and optimization of candesartan cilexetil nano lipid carrier: in-vitro and in-vivo evaluation. Curr Drug Del 2017. 2017;14(7):1005–15.

    CAS  Google Scholar 

  28. Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharmac Acta Helv. 1985;60:110–1.

    CAS  Google Scholar 

  29. Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6:231–48.

    Article  CAS  Google Scholar 

  30. Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29:278–87.

    Article  CAS  Google Scholar 

  31. Priyanka K, Sathali AA. Preparation and evaluation of montelukast sodium loaded solid lipid nanoparticles. J Young Pharm. 2012;4:129–37.

    Article  CAS  Google Scholar 

  32. Reagan SS, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. The FASEB J. 2008;22(3):659–61.

    Article  Google Scholar 

  33. Sayeed S, Imam SS, Najmi AK, Aqil M, Akhtar M. Nonionic surfactant based thymoquinone loaded nanoproniosomal formulation: in vitro physicochemical evaluation and in vivo hepatoprotective efficacy. Drug Dev Ind Pharm. 2017;43:1413–20. https://doi.org/10.1080/03639045.2017.1318903.

    Article  CAS  PubMed  Google Scholar 

  34. Scott LJ, McCormack PL. Olmesartan medoxomil: a review of its use in the management of hypertension. Drugs. 2008;68:1239–72.

    Article  CAS  Google Scholar 

  35. Shah KA, Date AA, Joshi MD, Patravale V. Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm. 2007;345:163−171.

    Article  Google Scholar 

  36. Singh B, Kumar R, Ahuja N. Optimizing drug delivery systems using systematic “design of experiments.” part I: fundamental aspects. Crit Rev Ther Drug Carrier Syst. 2005;22:27–105.

    Article  CAS  Google Scholar 

  37. Subedi RK, Kang KW, Choi HK. (2009). Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci 37, 508–13, 513.

    Article  CAS  Google Scholar 

  38. Xie S, Zhu L, Dong Z, Wang X, Wang Y, Li X, et al. Preparation, characterization, and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: influences of fatty acids. Colloids Surf B Biointerfaces. 2011;83:382–7.

    Article  CAS  Google Scholar 

  39. Zhiwen Z, Huihui B, Zhiwei G, Yan H, Fang GB, Yaping L. The characteristics and mechanism of olmesartan loaded lipid nanoparticles to increase oral bioavailability in rats. Int J of Pharm. 2010;394:147–53.

    Article  Google Scholar 

  40. Kaithwas V, Dora CP, Kushwah V, Jain S. Nanostructured lipid carriers of olmesartan medoxomil with enhanced oral bioavailability. Colloids Surf B Biointerfaces 2017 1. 2017;154:10–20.

    Article  CAS  Google Scholar 

  41. Elmowafy M, Samy A, Raslan MA, Salama A, Said RA, Abdelaziz AE, et al. Enhancement of bioavailability and Pharmacodynamic effects of thymoquinone via nanostructured lipid carrier (NLC) formulation. AAPS PharmSciTech. 2015;17:663–72. https://doi.org/10.1208/s12249-015-0391-0.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ranbaxy, Gurgaon, India, for providing OLM as a gift sample.

Source of Funding

The authors have not received any funding for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Aqil.

Ethics declarations

All the experiments reported in this manuscript comply with the current laws of the country in which they were performed. All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of Interest

All authors declare no conflicts interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasnain, M., Imam, S.S., Aqil, M. et al. Application of Lipid Blend-Based Nanoparticulate Scaffold for Oral Delivery of Antihypertensive Drug: Implication on Process Variables and In Vivo Absorption Assessment. J Pharm Innov 13, 341–352 (2018). https://doi.org/10.1007/s12247-018-9329-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-018-9329-x

Keywords

Navigation