Skip to main content
Log in

Nonlinear Dynamic Structural Optimization of Electric Vehicles Considering Multiple Safety Tests

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

A nonlinear dynamic structural optimization method is presented for the design of electric vehicles. A pack crush test and a pole impact test are selected as two different types of battery pack safety assessment. Two finite element models are defined for the pack crush test and the pole impact test, and two optimization problems are formulated for each test, respectively. The battery pack is the shared part of the two finite element models. The equivalent static loads method is employed for the nonlinear dynamic response optimization of the multi-model. The current equivalent static loads method can consider only one model while the current multi-model optimization is only for linear response optimization. A novel equivalent static loads method is proposed to handle multiple finite element models by using multi-model optimization. The mass of the structure is minimized, and displacement constraints are defined on the intrusion of the battery pack to prevent fire in the analyses. The resultant design can protect the battery system from physical shocks and car accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Bazoon, M. and Arora, J. S. (2021). Discrete variable optimization of structures subjected to dynamic loads using equivalent static loads and metaheuristic algorithms. Optimization and Engineering, 23, 643–687.

    Article  MathSciNet  MATH  Google Scholar 

  • Altair (2020). HyperWorks 2020 — OptiStruct Users Manual. Altair Engineering, Inc. Troy, MI, USA.

    Google Scholar 

  • Arbelaez, R. A., Baker, B. C. and Nolan, J. M. (2005). Delta Vs for IIHS side impact crash tests and their relationship to real world crash severity. 19th Int. Technical Conf. Enhanced Safety of Vehicles (ESV), Washington DC, USA.

  • Arora, J. S. (2011). Introduction to Optimum Design. Elsevier. Amsterdam, The Netherlands.

    Google Scholar 

  • Autodesk (2020). 3DS max. Autodesk, Inc. San Rafael, CA, USA.

    Google Scholar 

  • Avalle, M., Chiandussi, G. and Belingardi, G. (2002). Design optimization by response surface methodology: application to crashworthiness design of vehicle structures. Structural and Multidisciplinary Optimization 24, 4, 325–332.

    Article  Google Scholar 

  • Baldomir, A., Hernandez, S., Romera, L. and Diaz, J. (2012). Size optimization of shell structures considering several incomplete configurations. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., Honolulu, Hawaii, USA.

  • Baldomir, A., Tembrás, E. and Hernández, S. (2015). Optimization of cable weight in multi-span cable-stayed bridges. Application to the Forth Replacement Crossing. Int. Conf. Multi-Span Large Bridges, Porto, Portugal.

  • Boria, S. and Pettinari, S. (2014). Mathematical design of electric vehicle impact attenuators: Metallic vs composite material. Composite Structures, 115, 51–59.

    Article  Google Scholar 

  • Choi, W. H., Lee, Y. M., Yoon, J. M., Han, Y. H. and Park, G. J. (2018). Structural optimization for roof crush test using an enforced displacement method. Int. J. Automotive Technology 19, 2, 291–299.

    Article  Google Scholar 

  • Choi, W. S. and Park, G. J. (2002). Structural optimization using equivalent static loads at all time intervals. Computer Methods in Applied Mechanics and Engineering 191, 19–20, 2077–2094.

    MATH  Google Scholar 

  • Cid Bengoa, C., Baldomir, A., Hernandez, S. and Jarrett, J. P. (2020). Multi-model optimization approach of aircraft structures under uncertainty using horsetail matching and RBDO methods. AIAA Scitech 2020 Forum, Orlando, FL, USA.

  • Cid Bengoa, C., Baldomir, A., Hernández, S. and Romera, L. (2017). Multi-model reliability-based design optimization of structures considering the intact configuration and several partial collapses. Structural and Multidisciplinary Optimization 57, 3, 977–994.

    Article  Google Scholar 

  • Cordera, R., dell’Olio, L., Ibeas, A. and Ortúzar, J. d. D. (2019). Demand for environmentally friendly vehicles: A review and new evidence. Int. J. Sustainable Transportation 13, 3, 210–223.

    Article  Google Scholar 

  • Costas, M., Díaz, J., Romera, L. and Hernández, S. (2014). A multi-objective surrogate-based optimization of the crashworthiness of a hybrid impact absorber. Int. J. Mechanical Sciences, 88, 46–54.

    Article  Google Scholar 

  • EuroNCAP (2020). Assessment Protocol — Adult Occupant Protection Version 9.1.2. European New Car Assessment Programme.

  • Fang, J., Sun, G., Qiu, N., Kim, N. H. and Li, Q. (2017). On design optimization for structural crashworthiness and its state of the art. Structural and Multidisciplinary Optimization 55, 3, 1091–1119.

    Article  MathSciNet  Google Scholar 

  • Gu, J., Li, G. Y. and Dong, Z. (2012). Hybrid and adaptive meta-model-based global optimization. Proc. ASME Int. Design Engineering Technical Conf. & Computers and Information in Engineering Conf., San Diego, California, USA.

  • Haftka, R. T. and Adelman, H. M. (1989). Recent developments in structural sensitivity analysis. Structural Optimization 1, 3, 137–151.

    Article  Google Scholar 

  • Haftka, R. T. and Gürdal, Z. (2012). Elements of Structural Optimization. Springer Science & Business Media. Berlin, Germany.

    MATH  Google Scholar 

  • Hallquist, J. O. (2006). LS-DYNA theory manual. Livermore Software Technology Corporation. Livermore, CA, USA.

    Google Scholar 

  • Kang, B. S., Choi, W. S. and Park, G. J. (2001). Structural optimization under equivalent static loads transformed from dynamic loads based on displacement. Computers & Structures 79, 2, 145–154.

    Article  Google Scholar 

  • Kang, B. S., Park, G. J. and Arora, J. S. (2006). A review of optimization of structures subjected to transient loads. Structural and Multidisciplinary Optimization 31, 2, 81–95.

    Article  MathSciNet  MATH  Google Scholar 

  • Karev, A., Harzheim, L., Immel, R. and Erzgräber, M. (2019). Free sizing optimization of a front hood using the ESL method: overcoming challenges and traps. Structural and Multidisciplinary Optimization 60, 4, 1687–1707.

    Article  Google Scholar 

  • Kim, H. C., Shin, D. K., Lee, J. J. and Kwon, J. B. (2014). Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application. Composite Structures, 112, 1–10.

    Article  Google Scholar 

  • Kim, Y. I. and Park, G. J. (2010). Nonlinear dynamic response structural optimization using equivalent static loads. Computer Methods in Applied Mechanics and Engineering 199, 9–12, 660–676.

    Article  MATH  Google Scholar 

  • Kurtaran, H., Eskandarian, A., Marzougui, D. and Bedewi, N. E. (2002). Crashworthiness design optimization using successive response surface approximations. Computational Mechanics 29, 4–5, 409–421.

    Article  MATH  Google Scholar 

  • Lee, H.-A. and Park, G.-J. (2015). Nonlinear dynamic response topology optimization using the equivalent static loads method. Computer Methods in Applied Mechanics and Engineering, 283, 956–970.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, Y. M., Han, Y. H., Park, S. O. and Park, G. J. (2019). Vehicle crash optimization considering a roof crush test and a side impact test. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 233, 10, 2455–2466.

    Google Scholar 

  • Ma, Y., Chen, X. and Zuo, W. (2020). Equivalent static displacements method for contact force optimization. Structural and Multidisciplinary Optimization 62, 1, 323–336.

    Article  Google Scholar 

  • MSC Software (2018). MSC Nastran Reference Guides. MSC Software Corporation. Irvine, CA, USA.

    Google Scholar 

  • Navale, A. B., Chippa, S. P., Chougule, D. A. and Raut, P. M. (2020). Crashworthiness aspects of electric vehicle design. Int. J. Crashworthiness 26, 4, 368–387.

    Article  Google Scholar 

  • NHTSA (2010). FMVSS No. 214 — Side Impact Protection. Federal Motor Vehicle Safety Standards (FMVSS).

  • NHTSA (2017). FMVSS No. 305 — Electric-Powered Vehicles: Electrolyte Spillage and Electrical Shock Protection. Federal Motor Vehicle Safety Standards (FMVSS).

  • NHTSA (2021). Crash Simulation Vehicle Models. https://www.nhtsa.gov/crash-simulation-vehicle-models.

  • Park, G. J. (2007). Analytic Methods for Design Practice. Springer Science & Business Media. Berlin, Germany.

    MATH  Google Scholar 

  • Park, G. J. (2011). Technical overview of the equivalent static loads method for non-linear static response structural optimization. Structural and Multidisciplinary Optimization 43, 3, 319–337.

    Article  Google Scholar 

  • Park, G. J. and Lee, Y. M. (2019). Discussion on the optimality condition of the equivalent static loads method for linear dynamic response structural optimization. Structural and Multidisciplinary Optimization 59, 1, 311–316.

    Article  MathSciNet  Google Scholar 

  • Park, G. J., Yoon, J. M. and Park, S. O. (2020a). OS-ESLM User’s Manual. Hanyang University. Seoul, Korea.

    Google Scholar 

  • Park, S. O., Choi, W. H. and Park, G. J. (2020b). Dynamic response optimization of structures with viscoelastic material using the equivalent static loads method. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 235, 2–3, 589–603.

    Google Scholar 

  • Ruiz, V., Pfrang, A., Kriston, A., Omar, N., Van den Bossche, P. and Boon-Brett, L. (2018). A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renewable and Sustainable Energy Reviews, 81, 1427–1452.

    Article  Google Scholar 

  • Ryu, Y. S., Haririan, M., Wu, C. C. and Arora, J. S. (1985). Structural design sensitivity analysis of nonlinear response. Computers & Structures 21, 1–2, 245–255.

    Article  MATH  Google Scholar 

  • Shin, J., Shin, S., Kim, Y., Ahn, S., Lee, S., Jung, G., Jeon, S. J. and Cho, D.-H. (2014). Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles. IEEE Trans. Industrial Electronics 61, 3, 1179–1192.

    Article  Google Scholar 

  • Siqi, L. and Mi, C. C. (2015). Wireless power transfer for electric vehicle applications. IEEE J. Emerging and Selected Topics in Power Electronics 3, 1, 4–17.

    Article  Google Scholar 

  • Sun, P., Bisschop, R., Niu, H. and Huang, X. (2020). A review of battery fires in electric vehicles. Fire Technology 56, 4, 1361–1410.

    Article  Google Scholar 

  • Sun, X., Shi, Z., Lei, G., Guo, Y. and Zhu, J. (2019). Analysis and design optimization of a permanent magnet synchronous motor for a campus patrol electric vehicle. IEEE Trans. Vehicular Technology 68, 11, 10535–10544.

    Article  Google Scholar 

  • Triller, J., Immel, R., Timmer, A. and Harzheim, L. (2021). The difference-based equivalent static load method: an improvement of the ESL method’s nonlinear approximation quality. Structural and Multidisciplinary Optimization 63, 6, 2705–2720.

    Article  Google Scholar 

  • TurboSquid (2021). Tesla Model S Frame and Chassis — 3DS max model. https://www.turbosquid.com/3d-models/3d-tesla-s-frame-chassis-model/1074486.

  • UNECE (2018). UN GTR No. 20 — Electric Vehicle Safety (EVS) (ECE/TRANS/180/Add.20). Global Technical Regulations (GTRs).

  • van Ratingen, M., Williams, A., Lie, A., Seeck, A., Castaing, P., Kolke, R., Adriaenssens, G. and Miller, A. (2016). The European new car assessment programme: A historical review. Chinese J. Traumatology 19, 2, 63–69.

    Article  Google Scholar 

  • VRAND (2012). ESLDYNA Documentation. Vanderplaats R&D, Inc. Gardenbrook, MI, USA.

    Google Scholar 

  • Yoon, J. M., Lee, Y. M., Park, S. O., Han, Y. H. and Park, G. J. (2019). Crash optimization considering the head injury criterion. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 233, 11, 2879–2890.

    Google Scholar 

  • Young, K., Wang, C. and Strunz, K. (2013). Electric Vehicle Integration into Modern Power Networks. Springer Science & Business Media. Berlin, Germany.

    Google Scholar 

  • Zagorski, N., Nelson, E., Caliskan, A. and Li, A. (2017). Design of automotive structures using multi-model optimization. SAE Paper No. 2017-01-1342.

  • Zhou, M. and Fleury, R. (2016). Fail-safe topology optimization. Structural and Multidisciplinary Optimization 54, 5, 1225–1243.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program) (20017248, Development of eco-friendly cold forming process technology of ultra-high-strength coil spring over 2GPa for electric vehicles) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). The authors are grateful to Mrs. MiSun Park for her English correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyung-Jin Park.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, MH., Park, GJ. Nonlinear Dynamic Structural Optimization of Electric Vehicles Considering Multiple Safety Tests. Int.J Automot. Technol. 24, 573–583 (2023). https://doi.org/10.1007/s12239-023-0048-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-023-0048-z

Key Words

Navigation