Skip to main content
Log in

Thermal Compensation Control Strategy in Automated Dry Clutch Engagement Dynamics and Launch Manoeuvre

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Repeated engagements in dry clutch systems could yield remarkable increase of clutch disk temperature. In dry clutch based transmissions like Automated Manual Transmissions and Dual Clutch Transmissions the overheating leads to poor control of gearshift quality due to unpredictable and fast change of frictional characteristic. Even permanent damage of clutch facings may occur. Under this light, this paper focusing on thermal effects to improve control performances and prevent uncomfortable engagements. To this aim, detailed analyses of dry clutch architecture have been carried out to understand the main phenomena which affect the clutch torque transmissibility. Moreover, a lumped thermal model has been developed to predict both the disk surface and cushion spring temperature in real-time environment. To validate the proposed thermal model, a non-linear least squares method has been used by comparing simulations with finite element results. A control strategy based on model predictive control and thermal compensation effects has been proposed to simulate vehicle launch manoeuvres in flat and up-hill road conditions with low and high initial clutch temperature as well. Finally, the proposed control approach has been compared with classic PI control strategy to prove its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α 0…13 :

polynomial coefficients

β :

clutch state parameter

δ f :

cushion spring deflection, mm

ø :

road grade angle, rad

μ :

friction coefficient

ξ :

adimensional throwout bearing position

ρ air :

air density, kg m−3

θ b :

clutch body temperature, K

θ cm :

clutch material temperature, K

θ fs :

cushion spring temperature, K

τ c :

clutch actuator delay, s

ω c :

clutch angular speed, rad s−1

ω e :

engine angular speed, rad s−1

ω sl :

angular sliding speed, rad s−1

ω w :

wheel angular speed, rad s−1

A:

vehicle frontal area, m2

ATM:

automated manual transmission

b e :

engine damping coefficients, Nm s rad−1

b g :

gearbox damping coefficients, Nm s rad−1

CoF:

coeffcient of friction

C x :

air drag coefficient

DCT:

dual clutch transmission

EV:

electric vehicle

f :

rolling resistance coefficient

F fc :

clamping force, N

F max :

maximum cushion spring reaction, N

FEA:

finite element analysis

g :

acceleration of gravity, m s−2

HEV:

hybrid electric vehicle

J cost :

model predictive control cost function

J ef :

equivalent engine inertias, kg m2

J v :

equivalent vehicle inertias, kg m2

m :

vehicle mass, kg

m h :

control horizon

MPC:

model predictive control

n :

number of friction surfaces

p :

contact pressure, Pa

p h :

prediction horizon

PI:

proportional-integral

r :

grar ratio

R m :

clutch mean radius, m

R w :

vehicle wheel radius, m

TCU:

transmission control unit

T e :

engine torque, Nm

T fc :

transmitted clutch torque, Nm

T s :

sampling time, s

T w :

equivalent torque load at wheel, Nm

ν :

vehicle speed, m s−1

ν s :

sliding speed, m s−1

χ pp :

pressure plate position, mm

χ to :

throwout bearing position, mm

χ to kiss :

kiss point position, mm

References

  • Abdullah, O. I., Schlattmann, J., Senatore, A. and Al-Shabibi, A. M. (2018a). Investigation of thermoelastic problem of multiple-disc friction clutches applying different thermal loads. Heat and Mass Transfer 54, 11, 3461–3471.

    Article  Google Scholar 

  • Abdullah, O. I., Schlattmann, J., Majeed, M. H. and Sabri, L. A. (2018b). The temperatures distributions of a single-disc clutches using heat partitioning and total heat generated approaches. Case Studies in Thermal Engineering, 11, 43–54.

    Article  Google Scholar 

  • Abdullah, O. I. and Schlattmann, J. (2014). Computation of surface temperatures and energy dissipation in dry friction clutches for varying torque with time. Int. J. Automotive Technology 15, 5, 733–740.

    Article  Google Scholar 

  • Abdullah, O. I. and Schlattmann, J. (2016). Thermal behavior of friction clutch disc based on uniform pressure and uniform wear assumptions. Friction 4, 3, 228–237.

    Article  Google Scholar 

  • Cappetti, N., Pisaturo, M. and Senatore, A. (2012). Modelling the cushion spring characteristic to enhance the automated dry-clutch performance: The temperature effect. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 226, 11, 1472–1482.

    Google Scholar 

  • Castellazzi, L., Tonoli, A., Amati, N. and Galliera, A. (2017). A study on the role of powertrain system dynamics on vehicle driveability. Vehicle System Dynamics: Int. J. Vehicle Mechanics and Mobility 55, 7, 1012–1028.

    Article  Google Scholar 

  • Centea, D., Rahnejat, H. and Menday, M. T. (1999). The influence of the interface coefficient of friction upon the propensity to judder in automotive clutches. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 213, 3, 245–258.

    Google Scholar 

  • Czél, B., Váradi, K., Albers, A. and Mitariu, M. (2009). Fe thermal analysis of a ceramic clutch. Tribology Int. 42, 5, 714–723.

    Article  Google Scholar 

  • D’Agostino, V., Cappetti, N., Pisaturo, M. and Senatore, A. (2012). Improving the engagement smoothness through multi-variable frictional map in automated dry clutch control. Proc. ASME Int. Mechanical Engineering Cong. & Exposition, Houston, Texas, USA.

    Google Scholar 

  • D’Agostino, V., Senatore, A. and Pisaturo, M. (2013). Improving the engagement performance of automated dry clutch through the analysis of the influence of the main parameters on the frictional map. Proc. 5th World Tribology Cong., Turin, Italy.

    Google Scholar 

  • Doman, Y., Fujii, T., Okubo, K. and He, H. (2003). Influence of residual stress on the load-deflection curve of diaphragm springs for automobile clutches. JSAE Review 24, 2, 197–203.

    Article  Google Scholar 

  • Duan, C. and Singh, R. (2006). Dynamics of a 3dof torsional system with a dry friction controlled path. J. Sound and Vibration 289, 4–5, 657–688.

    Article  Google Scholar 

  • Fan, X., Walker, P. D. and Wang, Q. (2017). Modeling and simulation of longitudinal dynamics coupled with clutch engagement dynamics for ground vehicles. Multibody System Dynamics 43, 2, 153–174.

    Article  MathSciNet  MATH  Google Scholar 

  • Feng, H., Yimin, M. and Juncheng, L. (2010). Study on heat fading of phenolic resin friction material for microautomobile clutch. Proc. Int. Conf. Measuring Technology and Mechatronics Automation, Changsha City, China.

    Google Scholar 

  • Fischer, R., Kücükay, F., Jürgens, G., Najork, R. and Pollak, B. (2014). The Automotive Transmission Book. Springer. Basel, Switzerland.

    Google Scholar 

  • Glielmo, L., Iannelli, L., Vacca, V. and Vasca, F. (2006). Gearshift control for automated manual transmissions. IEEE/ASME Trans. Mechatronics 11, 1, 17–26.

    Article  Google Scholar 

  • Gregori, I. R. S., Sanches, I. and Thomaz, C. E. (2017). Clutch judder classification and prediction: A multivariate statistical analysis based on torque signals. IEEE Trans. Industrial Electronics 64, 5, 4287–4295.

    Article  Google Scholar 

  • Hebbale, K., Samie, F. and Kish, J. (2015). Dry dual clutch transmission (DCT) thermal model. SAE Paper No. 2015-01-1144.

    Google Scholar 

  • Hoic, M., Herold, Z., Kranjcevic, N., Deur, J. and Ivanovic, V. (2013). Experimental characterization and modeling of dry dual clutch thermal expansion effects. SAE Paper No. 2013-01–0818.

    Google Scholar 

  • Huang, Q., Song, J. and Li, L. (2011). Research on rapid testing platform for TCU of automated manual transmission. Proc. 3rd Int. Conf. Measuring Technology and Mechatronics Automation, Shangshai, China.

    Google Scholar 

  • Ivanović, V., Herold, Z., Deur, J., Hancock, M. and Assadian, F. (2009). Experimental characterization of wet clutch friction behaviors including thermal dynamics. SAE Paper No. 2009-01-1360.

    Google Scholar 

  • Kim, J. (2016). An automotive clutch control for vibration suppression of dual clutch transmissions. SAE Paper No. 2016-01-1114.

    Google Scholar 

  • Kim, S. and Choi, S. (2018). Control-oriented modeling and torque estimations for vehicle driveline with dual-clutch transmission. Mechanism and Machine Theory, 121, 633–649.

    Article  Google Scholar 

  • Li, G. and Görges, D. (2018). Optimal control of the gear shifting process for shift smoothness in dual-clutch transmissions. Mechanical Systems and Signal Processing, 103, 23–38.

    Article  Google Scholar 

  • Lin, X., Xi, J. and Hao, S. (2017). The calculation model of the friction torque on a dry clutch. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 231, 13, 1796–1805.

    Google Scholar 

  • Liu, H., Lee, J. C., Noh, Y. J., Cho, H. J., Lee, H. R., Koh, J. E. and Kang, J. W. (2015). A study on thermal analytical model for a dry dual clutch. J. Drive and Control 12, 1, 1–8.

    Article  Google Scholar 

  • Liu, Y., Chen, D., Zhenzhen, L., Datong, Q., Zhang, Y., Wu, R. and Luo, Y. (2017). Modeling and control of engine starting for a full hybrid electric vehicle based on system dynamic characteristics. Int. J. Automotive Technology 18, 5, 911–922.

    Article  Google Scholar 

  • Marklund, P. and Larsson, R. (2008). Wet clutch friction characteristics obtained from simplified pin on disc test. Tribology Int. 41, 9–10, 824–830.

    Article  Google Scholar 

  • Myklebust, A. and Eriksson, L. (2013). The effect of thermal expansion in a dry clutch on launch control?. IFAC Proc. Volumes 46, 21, 458–463.

    Article  Google Scholar 

  • Myklebust, A. and Eriksson, L. (2015). Modeling, observability, and estimation of thermal effects and aging on transmitted torque in a heavy duty truck with a dry clutch. IEEE/ASME Trans. Mechatronics 20, 1, 61–72.

    Article  Google Scholar 

  • Naus, G. J. L., Beenakkers, M., Huisman, R. G. M., van de Molengraft, M. J. G. and Steinbuch, M. (2010). Robust control of a clutch system to prevent judder-induced driveline oscillations. Vehicle System Dynamics: Int. J. Vehicle Mechanics and Mobility 48, 11, 1379–1394.

    Article  Google Scholar 

  • Oh, J., Choi, S. B., Chang, Y. J. and Eo, J. S. (2017). Engine clutch torque estimation for parallel-type hybrid electric vehicles. Int. J. Automotive Technology 18, 1, 125–135.

    Article  Google Scholar 

  • Park, S., Kim, K., Na, B. and Kim, J. (2019). Novel self-clamping clutch mechanism for micro electric vehicle transmission. Int. J. Automotive Technology 20, 1, 147–156.

    Article  Google Scholar 

  • Pica, G., Cervone, C., Senatore, A., Lupo, M. and Vasca, F. (2016). Dry dual clutch torque model with temperature and slip speed effects. Intelligent Industrial Systems 2, 2, 133–147.

    Article  Google Scholar 

  • Pisaturo, M., D’Auria, C. and Senatore, A. (2016a). Friction coefficient influence on the engagement uncertainty in dry-clutch AMT. Proc. American Control Conf. (ACC), Boston, Massachusetts, USA.

    Google Scholar 

  • Pisaturo, M. and Senatore, A. (2016b). Simulation of engagement control in automotive dry-clutch and temperature field analysis through finite element model. Applied Thermal Engineering, 93, 958–966.

    Article  Google Scholar 

  • Pisaturo, M. and Senatore, A. (2018). Mild-hybrid electric vehicle: EM management to prevent dry clutch overheating. Proc. European Control Conf. (ECC)., Limassol, Cyprus.

    Google Scholar 

  • Pisaturo, M., Senatore, A. and D’Agostino, V. (2015). Model predictive controller for the clutch engagement to limit the traction lag due to the engine torque build-up Proc. 27th Chinese Control and Decision Conf., Qingdao, China.

    Google Scholar 

  • Pisaturo, M., Senatore, A. and D’Agostino, V. (2016). Automotive dry-clutch control: Engagement tracking and FE thermal model. Proc. IEEE 20th Jubilee Int. Conf. Intelligent Engineering Systems (INES), Budapest, Hungary.

    Google Scholar 

  • Senatore, A., D’Agostino, V., Di Giuda, R. and Petrone, V. (2011). Experimental investigation and neural network prediction of brakes and clutch material frictional behaviour considering the sliding acceleration influence. Tribology Int. 44, 10, 1199–1207.

    Article  Google Scholar 

  • Senatore, A., D’Auria, C. and Pisaturo, M. (2017). Frictional behaviour and engagement control in dry clutch based automotive transmissions. Vehicle Engineering, 4, 1–12.

    Article  Google Scholar 

  • Sfarni, S., Bellenger, E., Fortin, J. and Malley, M. (2009). Finite element analysis of automotive cushion discs. Thin-Walled Structures 47, 4, 474–483.

    Article  Google Scholar 

  • Sharifzadeh, M., Akbari, A., Timpone, F. and Daryani, R. (2016). Vehicle tyre/road interaction modeling and identification of its parameters using real-time trustregion methods. IFAC-PapersOnLine 49, 3, 111–116.

    Article  MathSciNet  Google Scholar 

  • Sharifzadeh, M., Timpone, F., Farnam, A., Senatore, A. and Akbari, A. (2017). Tyre-road adherence conditions estimation for intelligent vehicle safety applications. Advances in Italian Mechanism Science, 389–398.

    Chapter  Google Scholar 

  • Vasca, F., Iannelli, L., Senatore, A. and Taglialatela Scafati, M. (2008). Modeling torque transmissibility for automotive dry clutch engagement. Proc. American Control Conf. (ACC), Seattle, Washington, USA.

    Google Scholar 

  • Vasca, F., Iannelli, L., Senatore, A. and Reale, G. (2011). Torque transmissibility assessment for automotive dry-clutch engagement. IEEE/ASME Trans. Mechatronics 16, 3, 564–573.

    Article  Google Scholar 

  • Wang, Y., Li, Y., Li, N., Sun, H., Wu, C. and Zhang, T. (2014). Time-varying friction thermal characteristics research on a dry clutch. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 228, 5, 510–517.

    Google Scholar 

  • Yang, Y., Zhu, Z., Wang, X., Chen, Z. and Ma, Z. (2017). Optimal launching-intention-aware control strategy for automated clutch engagement. Int. J. Automotive Technology 18, 3, 417–428.

    Article  Google Scholar 

  • Yevtushenko, A. A., Adamowicz, A. and Grzes, P. (2013). Three-dimensional FE model for the calculation of temperature of a disc brake at temperature-dependent coefficients of friction. Int. Communications in Heat and Mass Transfer, 42, 18–24.

    Article  Google Scholar 

  • Zhao, Z. G., Chen, H. J., Zhen, Z. X. and Yang, Y. Y. (2014). Optimal torque coordinating control of the launching with twin clutches simultaneously involved for dry dual-clutch transmission. Vehicle System Dynamics: Int. J. Vehicle Mechanics and Mobility 52, 6, 776–801.

    Article  Google Scholar 

  • Zhao, Z. G., Chen, H. J., Yang, Y. Y. and He, L. (2015). Torque coordinating robust control of shifting process for dry dual clutch transmission equipped in a hybrid car. Vehicle System Dynamics: Int. J. Vehicle Mechanics and Mobility 53, 9, 1269–1295.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Pisaturo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisaturo, M., Senatore, A. Thermal Compensation Control Strategy in Automated Dry Clutch Engagement Dynamics and Launch Manoeuvre. Int.J Automot. Technol. 20, 1089–1101 (2019). https://doi.org/10.1007/s12239-019-0102-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-019-0102-z

Key Words

Navigation