Skip to main content
Log in

Assimilation of Allochthonous Matter by Estuarine Consumers During the 2015 El Niño Event

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The El Niño phenomenon refers to a warming of the tropical Pacific basin whose meteorological effects influence the dynamics of aquatic ecosystems around the world. Prior studies have shown that strong El Niño events are highly correlated with high rainfall episodes and high freshwater discharge into subtropical estuaries, with subsequent changes in species composition, abundance, and diversity of their biota. In this work, we evaluated the hypothesis that riverine allochthonous matter associated with the strong 2015 El Niño event is assimilated by decapod crustaceans and fishes of a southwestern Atlantic estuary. We analyzed carbon (δ13C) and nitrogen (δ15N) stable isotope ratios of primary food sources and consumers in the estuary and of riverine allochthonous matter. Our findings revealed that higher water surplus and lower salinity associated with the 2015 El Niño coincided with an increase in the number of freshwater fish species and a decrease in the number of marine- and estuarine-dependent fishes inside the estuary. In addition, most estuarine consumers had lower average δ13C values during the wet period associated with the 2015 El Niño. This seemed to reflect the assimilation of 13C-depleted riverine matter, which according to Bayesian isotope mixing models ranged from 11% (adult resident decapod crustaceans) to 60% (adult resident fishes) during the wet season. Further studies are needed to evaluate the role of El Niño events on structuring food web organization in estuaries under the influence of this climatic phenomenon, which may become more frequent and intense in a global warming scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrantes, K.G., A. Barnett, T.R. Marwick, and S. Bouillon. 2013. Importance of terrestrial subsidies for estuarine food webs in contrasting East African catchments. Ecosphere 4: 1–33.

    Article  Google Scholar 

  • Acharya, K., P.A. Bukaveckas, J.D. Jack, M. Kyle, and J.J. Elser. 2006. Consumer growth linked to diet and RNA-P stoichiometry: Response of Bosmina to variation in riverine food resources. Limnology and Oceanography 51 (4): 1859–1869. Access 16 April 2018

  • Barnes, A.D., M. Jochum, J.S. Lefcheck, N. Eisenhauer, C. Scherber, M.I. O’Connor, P. Ruiter, and U. Brose. 2018. Energy flux: The link between multitrophic biodiversity and ecosystem functioning. Trends in Ecology & Evolution 33 (3): 186–197.

    Article  Google Scholar 

  • Baxter, C.V., K.D. Fausch, and W.C. Saunders. 2005. Tangled webs: Reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biology 50 (2): 201–220.

    Article  Google Scholar 

  • Bemvenuti, C.E. 1997. Unvegetated intertidal flats and subtidal bottoms. In Subtropical convergence environments: The coast and sea in the Southwestern Atlantic, ed. U. Seeliger, C. Odebrecht, and J.P. Castello, 78–82. Berlin: Springer.

    Google Scholar 

  • Bergamino, L., and N.B. Richoux. 2015. Spatial and temporal changes in estuarine food web structure: Differential contributions of marsh grass detritus. Estuaries and Coasts 38 (1): 367–382.

    Article  CAS  Google Scholar 

  • Bergamino, L., D. Lercari, and O. Defeo. 2011. Food web structure of sandy beaches: Temporal and spatial variation using stable isotope analysis. Estuarine, Coastal and Shelf Science 91 (4): 536–543.

    Article  CAS  Google Scholar 

  • Bishop, K.A., J.W. McClelland, and K.H. Dunton. 2017. Freshwater contributions and nitrogen sources in a south Texas estuarine ecosystem: A time-integrated perspective from stable isotopic ratios in the eastern oyster (Crassostrea virginica). Estuaries and Coasts 40 (5): 1314–1324.

    Article  CAS  Google Scholar 

  • Bivand, R.S., E. Pebesma, and V. Gomez-Rubio. 2013. Applied spatial data analysis with R. Second ed. NY: Springer http://www.asdar-book.org/. Access 16 April 2018.

  • Camilleri, J. 1992. Leaf-litter processing by invertebrates in a mangrove forest in Queensland. Marine Biology 114: 139–145.

    Google Scholar 

  • Carassou, L., A.K. Whitfield, L. Bergamino, S. Moyo, and N.B. Richoux. 2016. Trophic dynamics of the cape stumpnose (Rhabdosargus holubi, Sparidae) across three adjacent aquatic habitats. Estuaries and Coasts 39 (4): 1221–1233.

    Article  CAS  Google Scholar 

  • Chao, L.H., L.E. Pereira, and J.P. Vieira. 1985. Estuarine fish community of the dos Patos Lagoon, Brazil. A baseline study. In Fish community ecology in estuaries and coastal lagoons: Towards an ecosystem integration, ed. A. Yanez-Arancibia, 429–450. Mexico: DR (R) UNAM Press.

    Google Scholar 

  • Claudino, M.C., P.C. Abreu, and A.M. Garcia. 2013. Stable isotopes reveal temporal and between-habitat differences in the relative importance of food sources and trophic pathways in a SW Atlantic estuary. Marine Ecology Progress Series 489: 29–42.

    Article  CAS  Google Scholar 

  • Condini, M.V., D.J. Hoeinghaus, and A.M. Garcia. 2015. Trophic ecology of dusky grouper Epinephelus marginatus (Actinopterygii, Epinephelidae) in littoral and neritic habitats of southern Brazil as elucidated by stomach contents and stable isotope analyses. Hydrobiologia 743 (1): 109–125.

    Article  Google Scholar 

  • Copertino, M., and U. Seeliger. 2010. Hábitats de Ruppia maritima e de macroalgas. In O Estuário da Lagoa dos Patos: Um Século de Transformações, ed. U. Seeliger and C. Odebrecht, 91–98. Rio Grande, Brazil: FURG.

    Google Scholar 

  • Copertino, M.S., J. Creed, M.O. Lanari, K. Magalhaes, K. Barros, P.C. Lana, L. Sordo, and P.A. Horta. 2016. Seagrass and submerged aquatic vegetation (VAS) habitats off the coast of Brazil: State of knowledge, conservation and main threats. Brazilian Journal of Oceanography 64 (spe2): 53–80.

    Article  Google Scholar 

  • Couch, C.A. 1989. Carbon and nitrogen stable isotopes of meiobenthos and their food resources. Estuarine, Coastal and Shelf Science 28 (4): 433–441.

    Article  Google Scholar 

  • Day, J.W., B.C. Crump, W.M. Kemp, and A. Yáñez-Arancibia. 2012. Estuarine ecology. New Jersey: Wiley-Blackwell.

    Book  Google Scholar 

  • Elliott, M., A.K. Whitfield, I.C. Potter, A.J.M. Blaber, D.P. Cyrus, F.G. Nordlie, and T.D. Harrison. 2007. The guild approach to categorizing estuarine fish assemblages: A global review. Fish and Fisheries 8 (3): 241–268.

    Article  Google Scholar 

  • Feng, J.X., Q.F. Gao, S.L. Dong, Z.L. Sun, and K. Zhang. 2014. Trophic relationships in a polyculture pond based on carbon and nitrogen stable isotope analyses: A case study in Jinghai Bay, China. Aquaculture 428: 258–264.

    Article  CAS  Google Scholar 

  • Froese, R., and D. Pauly. 2018. FishBase. World Wide Web electronic publication. www.fishbase.org—version (02/2018).

  • Fry, B. 2006. Stable isotope ecology. New York: Springer.

    Book  Google Scholar 

  • Garcia, A.M., and J.P. Vieira. 1997. Abundância e diversidade da assembléia de peixes dentro e fora de uma pradaria de Ruppia maritima L., no estuário da Lagoa dos Patos (RS, Brasil). Atlântica Rio Grande 19: 161–181.

    Google Scholar 

  • Garcia, A.M., J.P. Vieira, C.E. Bemvenuti, and R.M. Geraldi. 1996. Abundância e diversidade da assembléia de crustáceos decápodes dentro e fora de uma pradaria de Ruppia maritima L., no estuário da Lagoa dos Patos (RS-Brasil). Nauplius Rio Grande 4: 113–128.

    Google Scholar 

  • Garcia, A.M., J.P. Vieira, and K.O. Winemiller. 2001. Dynamics of the shallow-water fish assemblage of the Patos Lagoon estuary (Brazil) during cold and warm ENSO episodes. Journal of Fish Biology 59 (5): 1218–1238.

    Article  Google Scholar 

  • Garcia, A.M., J.P. Vieira, K.O. Winemiller, and A.M. Grimm. 2004. Comparison of 1982-1983 and 1997-1998 El Niño effects on the shallow-water fish assemblage of the Patos Lagoon Estuary (Brazil). Estuaries 27 (6): 905–914.

    Article  Google Scholar 

  • Garcia, A.M., R.M. Geraldi, and J.P. Vieira. 2005. Diet composition and feeding strategy of the southern pipefish Syngnathus folletti in a widgeon grass bed of the Patos Lagoon Estuary, RS, Brazil. Neotropical Ichthyology 3 (3): 427–432.

    Article  Google Scholar 

  • Garcia, A.M., M.A. Bemvenuti, J.P. Vieira, D.M.L.M. Marques, M.D.M. Burns, A. Moresco, and M.V. Condini. 2006. Checklist comparison and dominance patterns of the fish fauna at Taim Wetland, South Brazil. Neotropical Ichthyology 4 (2): 261–268.

    Article  Google Scholar 

  • Garcia, A.M., D.J. Hoeinghaus, J.P. Vieira, and K.O. Winemiller. 2007. Isotopic variation of fishes in freshwater and estuarine zones of a large subtropical coastal lagoon. Estuarine, Coastal and Shelf Science 73 (3-4): 399–408.

    Article  Google Scholar 

  • Garcia, A.M., M.C. Claudino, R. Mont’Alverne, P.E.R. Pereyra, M. Copertino, and J.P. Vieira. 2017a. Temporal variability in food assimilation of basal food sources by an omnivorous fish at Patos Lagoon Estuary revealed by stable isotopes (2010–2014). Marine Biology Research 13 (1): 98–107.

    Article  Google Scholar 

  • Garcia, A.M., K.O. Winemiller, D.J. Hoeinghaus, M.C. Claudino, R. Bastos, F. Correa, S. Huckembeck, J.P. Vieira, D. Loebmann, P. Abreu, and C. Ducatti. 2017b. Hydrologic pulsing promotes spatial connectivity and food web subsidies in a subtropical coastal ecosystem. Marine Ecology Progress Series 567: 17–28.

    Article  CAS  Google Scholar 

  • Garcia, A.F.S., A.M. Garcia, S. Vollrath, F. Schneck, C.F.M. Silva, I.J. Marchetti, and J.P. Vieira. 2018. Spatial diet overlap and food resource in two congeneric mullet species revealed by stable isotopes and stomach content analyses. Community Ecology 19 (2): 116–124.

    Article  Google Scholar 

  • Garcia, A.F.S., M.L. Santos, A.M. Garcia, and J.P. Vieira. 2019. Changes in food web structure of fishes assemblages along a river to ocean transect of a coastal subtropical system. Marine and Freshwater Research 70 (3): 402–416.

    Article  Google Scholar 

  • Glibert, P.M., J.J. Middelburg, J.W. McClelland, and M. Jake Vander Zanden. 2018. Stable isotope tracers: Enriching our perspectives and questions on sources, fates, rates, and pathways of major elements in aquatic systems. Limnology and Oceanography 9999: 1–32.

    Google Scholar 

  • Golden Gate Weather Services. 2017. El Niño and La Niña years and intensities. Based on Oceanic Niño Index (ONI). Updated February 2018. Available in http://ggweather.com/enso/oni.htm. Access in: April 13 2018.

  • Grimm, A.M., V.R. Barros, and M.E. Doyle. 2000. Climate variability in Southern America associated with El Niño and La Niña events. Journal of Climate 13 (1): 35–58.

    Article  Google Scholar 

  • Henriques-Oliveira, A.L., J.L. Nessimian, and L.F.M. Dorvillé. 2003. Feeding habits of chironomid larvae (Insecta: Diptera) from a stream in the Floresta da Tijuca, Rio de Janeiro, Brazil. Brazilian Journal of Biology 63 (2): 269–281.

    Article  CAS  Google Scholar 

  • Heymans, J.J., and A. McLachlan. 1996. Carbon budget and network analysis of a high-energy beach/surf-zone ecosystem. Estuarine, Costal and Shelf Science 43 (4): 485–505.

    Article  CAS  Google Scholar 

  • Hicks, B.J. 1997. Food webs in forest and pasture streams in the Waikato region, New Zealand: A study based on analyses of stable isotopes of carbon and nitrogen, and fish gut contents. New Zealand Journal of Marine and Freshwater Research 5: 651–664.

    Article  Google Scholar 

  • Hoeinghaus, D.J., J.P. Vieira, C.S. Costa, C.E. Bemvenuti, K.O. Winemiller, and A.M. Garcia. 2011. Estuary hydrogeomorphology affects carbon sources supporting aquatic consumers within and among ecological guilds. Hydrobiologia 673 (1): 79–92.

    Article  CAS  Google Scholar 

  • Hoffman, J.C., D.A. Bronk, and J.E. Olney. 2008. Organic matter sources supporting lower food web production in the tidal freshwater portion of the York River Estuary, Virginia. Estuaries and Coasts 31 (5): 898–911.

    Article  CAS  Google Scholar 

  • Hoffman, J.C., M.E. Sierszen, and A.M. Cotter. 2015a. Fish tissue lipid-C:N relationships for correcting δ13C values and estimating lipid content in aquatic food-web studies. Rapid Communications in Mass Spectrometry 29 (21): 2069–2077.

    Article  CAS  Google Scholar 

  • Hoffman, J.C., J.R. Kelly, G.S. Peterson, and A.M. Cotter. 2015b. Landscape-scale food webs of fish nursery habitat along a river-coast mixing zone. Estuaries and Coasts 38 (4): 1335–1349.

    Article  CAS  Google Scholar 

  • Howe, E., and C.A. Simenstad. 2015. Using isotopic measures of connectivity and ecosystem capacity to compare restoring and natural marshes in the Skokomish River Estuary, WA, USA. Estuaries and Coasts 38 (2): 639–658.

    Article  CAS  Google Scholar 

  • Layman, C.A., M.S. Araujo, R. Boucek, E. Harrison, Z.R. Jud, P. Matich, C.M. Hammerschlag-Peyer, A.E. Rosenblatt, J.J. Vaudo, L.A. Yeager, D. Post, and S. Bearhop. 2012. Applying stable isotopes to examine food web structure: An overview of analytical tools. Biological Reviews 87: 542–562.

    Article  Google Scholar 

  • Le Pape, O., J. Modéran, G. Beaunée, P. Riera, D. Nicolas, N. Savoye, M. Harmelin-Vivien, A. Darnaude, A. Brind’Amour, H. Le Bris, H. Cabral, C. Vinagre, S. França, and C. Kostecki. 2013. Organic matter sources for flatfish juveniles in coastal and estuarine nursery grounds: A meta-analysis for the common sole (Solea solea) in contrasted systems of Western Europe. Journal of Sea Research 75: 85–95.

    Article  Google Scholar 

  • Lemos, V.M., D.F.A. Troca, J.P. Castello, and J.P. Vieira. 2016. Tracking the southern Brazilian schools of Mugil liza during reproductive migration using VMS of purse seiners. Latin American Journal of Aquatic Research 44 (2): 238–246.

    Article  Google Scholar 

  • Livingston, R.J., X. Niu, F.G. Lewis, and G.C. Woodsum. 1997. Freshwater input to a gulf estuary: Long-term control of trophic organization. Ecological Applications 7 (1): 277–299.

    Article  Google Scholar 

  • Loitzenbauer, E., and C.A.B. Mendes. 2012. Salinity dynamics as a tool for water resources management in coastal zones: An application in the Tramandaí River basin, southern Brazil. Ocean and Coastal Management 55: 52–62.

    Article  Google Scholar 

  • Lowe-McConnell, R.H. 1987. Ecological studies in tropical fish communities. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Luz-Agostinho, K.D.G., A.A. Agostinho, L.C. Gomes, and H.F. Júlio Jr. 2008. Influence of flood pulses on diet composition and trophic relationships among piscivorous fish in the upper Paraná River floodplain. Hydrobiologia 607 (1): 187–198.

    Article  Google Scholar 

  • Malabarba, L.R., P. Carvalho-Neto, V.A. Bertaco, T.P. Carvalho, J.F. Santos, and L.G.S. Artioli. 2013. Guia de Identificação dos Peixes da Bacia do Rio Tramandaí. Brazil: Via Sapiens.

    Google Scholar 

  • Mont'Alverne, R., T.D. Jardine, P.E.R. Pereyra, M.C.L.M. Oliveira, R.S. Medeiros, L.A. Sampaio, M.B. Tesser, and A.M. Garcia. 2016a. Elemental turnover rates and isotopic discrimination in a euryhaline fish reared under different salinities: Implications for movement studies. Journal of Experimental Marine Biology and Ecology 480: 36–44.

    Article  CAS  Google Scholar 

  • Mont'Alverne, R., P.E.R. Pereyra, and A.M. Garcia. 2016b. Trophic segregation of a fish assemblage along lateral depth gradients in a subtropical coastal lagoon revealed by stable isotope analyses. Journal of Fish Biology 89 (1): 770–792.

    Article  CAS  Google Scholar 

  • Mooney, R.F., and J.W. McClelland. 2012. Watershed export events and ecosystem responses in the Mission–Aransas National Estuarine Research Reserve, south Texas. Estuaries and Coasts 35 (6): 1468–1485.

    Article  Google Scholar 

  • Mor, J.R., A. Ruhí, E. Tornés, H. Valcárcel, I. Muñoz, and S. Sabater. 2018. Dam regulation and riverine food-web structure in a Mediterranean river. Science of the Total Environment 625: 301–310.

    Article  CAS  Google Scholar 

  • Odebrecht, C., E.R. Secchi, P.C. Abreu, J.H. Muelbert, and F. Uiblein. 2017. Biota of the Patos Lagoon estuary and adjacent marine coast: Long-term changes induced by natural and human-related factors. Marine Biology Research 13 (1): 3–8.

    Article  Google Scholar 

  • Oliveira, M.C.L.M., R. Mont’Alverne, L.A. Sampaio, M.B. Tesser, L.R.V. Ramos, and A.M. Garcia. 2017. Elemental turnover rates and trophic discrimination in juvenile Lebranche mullet Mugil liza under experimental conditions. Journal of Fish Biology 91 (4): 1241–1249.

    Article  CAS  Google Scholar 

  • Oliver, D.R. 1971. Life history of the Chironomidae. Annual Review of Entomology 16 (1): 211–230.

    Article  Google Scholar 

  • Paek, H., J.Y. Yu, and C. Qian. 2017. Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophysical Research Letters 44: 1848–1856.

    Google Scholar 

  • Parnell, A.C. and R. Inger 2016. simmr: A stable isotope mixing model. R package version 0.3. https://CRAN.R-project.org/package=simmr. Access 16 April 2018.

  • Parnell, A.C., D.L. Phillips, S. Bearhop, B.X. Semmens, E.J. Ward, J.W. Moore, A.L. Jackson, J. Grey, D.J. Kelly, and R. Inger. 2013. Bayesian stable isotope mixing models. Environmetrics 24: 387–399.

    Google Scholar 

  • Pasquaud, S., P. Elie, C. Jeantet, I. Billy, P. Martinez, and M. Girardin. 2008. A preliminary investigation of the fish food web in the Gironde estuary, France, using dietary and stable isotope analyses. Estuarine, Coastal and Shelf Science 78 (2): 267–279.

    Article  Google Scholar 

  • Pebesma, E.J., and R.S. Bivand. 2005. Classes and methods for spatial data in R. R News 5 (2) https://cran.r-project.org/doc/Rnews/. Access 16 April 2018.

  • Phillips, D.L., R. Inger, S. Bearhop, A.L. Jackson, J.W. Moore, A.C. Parnell, B.X. Semmens, and E.J. Wardg. 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92 (10): 823–835.

    Article  Google Scholar 

  • Pinder, L.C.V. 1986. Biology of freshwater Chironomidae. Annual Review of Entomology 31 (1): 1–23.

    Article  Google Scholar 

  • Possamai, B., J.P. Vieira, A.M. Grimm, and A.M. Garcia. 2018. Temporal variability (1997-2015) of trophic fish guilds and its relationships with El Niño events in a subtropical estuary. Estuarine, Coastal and Shelf Science 202: 145–154.

    Article  Google Scholar 

  • Post, D.M. 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83 (3): 703–718.

    Article  Google Scholar 

  • R Core Team. 2017. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing URL https://www.R-project.org/. Access 16 April 2018.

  • Riera, P., and P. Richard. 1996. Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Estuarine, Coastal and Shelf Science 42 (3): 347–360.

    Article  Google Scholar 

  • Robertson, A.W., and C.R. Mechoso. 1998. Interannual and decadal cycles in river flows of southeastern South America. Journal of Climate 11 (10): 2570–2581.

    Article  Google Scholar 

  • Rocha, M.J., A. Arukwe, and B.G. Kapoor. 2008. Fish reproduction. USA: CRC Press.

    Book  Google Scholar 

  • Rooney, N., K. McCann, G. Gellner, and J.C. Moore. 2006. Structural asymmetry and the stability of diverse food webs. Nature 442 (7100): 265–269.

    Article  CAS  Google Scholar 

  • Rowlingson, B., and P. Diggle. 2017. splancs: Spatial and space-time point pattern analysis. R package version 2.01-40. https://CRAN.R-project.org/package=splancs. Access 16 April 2018.

  • Ruppert, E.E., and R.D. Barnes. 1994. Invertebrate zoology. Orlando: Saunders College Publishing, Harcourt Brace and Company.

    Google Scholar 

  • Savage, C., S.F. Thrush, A.M. Lohrer, and J.E. Hewitt. 2012. Ecosystem services transcend boundaries: Estuaries provide resource subsidies and influence functional diversity in coastal benthic communities. PLoS One 7: 1–8.

    Article  CAS  Google Scholar 

  • Schwarzbold, A., and A. Schäfer. 1984. Gênese das lagoas costeiras do Rio Grande do Sul. Amazoniana 9: 84–104.

    Google Scholar 

  • Seyboth, E., S. Botta, C.R.B. Mendes, J. Negrete, L. Dalla Rosa, and E.R. Secchi. 2018. Isotopic evidence of the effect of warming on the northern Antarctic Peninsula ecosystem. Deep Sea Research Part II: Topical Studies in Oceanography 149: 218–228.

    Article  CAS  Google Scholar 

  • Smith, J.A., D. Mazumder, I.M. Suthers, and M.D. Taylor. 2013. To fit or not to fit: Evaluating stable isotope mixing models using simulated mixing polygons. Methods in Ecology and Evolution 4 (7): 612–618.

    Article  Google Scholar 

  • Sun, X., B. Renard, M. Thyer, S. Westra, and L. Michel. 2015. A global analysis of the asymmetric effect of ENSO on extreme precipitation. Journal of Hydrology 530: 51–65.

    Article  Google Scholar 

  • Timmermann, A., J. Oberhuber, A. Bacher, M. Esch, M. Latif, and E. Roeckner. 1999. Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398 (6729): 694–697.

    Article  CAS  Google Scholar 

  • Vieira, J.P., and J.P. Castello. 1997. Fish fauna. In Subtropical convergence environments. The coast and sea in the Southwestern Atlantic, ed. U. Seeliger, C. Odebrecht, and J.P. Castello, 56–61. New York: Springer-Verlag.

    Google Scholar 

  • Waycott, M., C.M. Duarte, T.J.B. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, F.T. Short, and S.L. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences 106 (30): 12377–12381.

    Article  Google Scholar 

  • Whitney, E.J., A.H. Beaudreau, and E.R. Howe. 2018. Using stable isotopes to assess the contribution of terrestrial and riverine organic matter to diets of nearshore marine consumers in a glacially influenced estuary. Estuaries and Coasts 41 (1): 193–205.

    Article  CAS  Google Scholar 

  • Williams, D.D., and N.E. Williams. 1998. Aquatic insects in an estuarine environment: Densities, distribution and salinity tolerance. Freshwater Biology 39 (3): 411–421.

    Article  Google Scholar 

  • Winemiller, K.O. 1990. Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs 60 (3): 331–367.

    Article  Google Scholar 

  • Winemiller, K.O., and D.B. Jepsen. 2004. Migratory neotropical fish subsidize food webs of oligotrophic blackwater rivers. In Food webs at the landscape level, ed. G.A. Polis, M.E. Power, and G.R. Huxel, 115–132. Chicago: University of Chicago Press.

    Google Scholar 

  • Winemiller, K.O., S. Akin, and S.C. Zeug. 2007. Production sources and food web structure of a temperate tidal estuary: Integration of dietary and stable isotope data. Marine Ecology Progress Series 343: 63–76.

    Article  CAS  Google Scholar 

  • Wootton, R.J. 1999. Ecology of teleost fishes. London: Chapman and Hall Ltd..

    Google Scholar 

  • Yeh, S.W., J.S. Kug, B. Dewitte, M.H. Kwon, B. Kirtman, and F.F. Jin. 2009. El Niño in a changing climate. Nature 461 (7263): 511–514.

    Article  CAS  Google Scholar 

  • Zhai, P., R. Yu, Y. Guo, Q. Li, X. Ren, Y. Wang, W. Xu, Y. Liu, and Y. Ding. 2016. The strong El Niño of 2015/16 and its dominant impacts on global and China's climate. Journal of Meteorological Research 30 (3): 283–297.

Download references

Acknowledgements

The authors are thankful to FAPERGS (project no. 2327-2551/14-6) by the financial support for field sampling and sample processing and to CAPES-PVE (project no. A101-2013) by financial support for running the stable isotope analysis. Adna Garcia thanks CAPES and PDSE (Proc. 88881.132228/2016-01) program for the doctorate scholarship at the Science Faculty in Lisboa University; Paula Pereyra, Kerolen Neves, Verónica Robles, and Ítalo Marchetti for their assistance with sample processing; and the fisherman Milton for helping during fish collections. AMG is thankful for the research fellowship provided by CNPq (Proc. 309208/2018-1). Stéphanie Pasquaud was funded with the Post-Doc grant SFRH/BPD/89480/2012 from FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adna Ferreira Silva Garcia.

Additional information

Communicated by Dennis Swaney

Electronic supplementary material

ESM 1

(DOCX 23 kb)

ESM 2

(DOCX 33 kb)

Fig Supplementary 1

Temporal variations in the Oceanic Niño Index (ONI), air temperature (oC) (superior and middle panels), and rainfall, evapotranspiration and water surplus (bottom panel) in the months preceding each field collection. (DOCX 529 kb)

Fig Supplementary 2

Average values of carbon (δ13C) (filled columns) and nitrogen (δ15N) (open columns) stable isotope ratios of particulate organic matter in suspension (POM) and in sediment (SOM) sampled in the river emptying into the estuary during the dry and wet periods. Letters denote statistically significant differences (Tukey’s post-hoc test, α = 5%), with uppper case letters indicating differences in δ15N and lower case letters differences in δ13C average values. (DOCX 34 kb)

Fig Supplementary 3

Diagnostic matrix plots showing the covariance structure between each pair of basal food sources. The main diagonal shows histograms of the distribution of possible solutions for each sources, the upper diagonal shows the contour plots of the relationship between sources, and the lower diagonal shows the correlation between each pair of sources. (DOCX 222 kb)

Fig Supplementary 4

Biplots of carbon (δ13C) and nitrogen (δ15N) stable isotope ratios with simulated mixing polygons, where filled circles represent consumers within each trophic guild and white crosses average autotrophic source values. Isotope fractionation correction was added to each average autotrophic source in order to run the simulations (see the “Material and Methods” section for fractionation values used). Color gradient represents probability contours which indicate how often a mixing polygon encloses an area. The outermost contour represents the 5% likelihood fit of a mixing model. The isotopic composition of those consumers situated outside the 95% mixing region (the outermost contour) cannot be adequately explain by the mixing model. See Table 1 for codes of consumers’ guilds. (DOCX 1930 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, A.F.S., Pasquaud, S., Cabral, H. et al. Assimilation of Allochthonous Matter by Estuarine Consumers During the 2015 El Niño Event. Estuaries and Coasts 42, 1281–1296 (2019). https://doi.org/10.1007/s12237-019-00570-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00570-w

Keywords

Navigation