Skip to main content

Advertisement

Log in

Quantification of the Attenuation of Storm Surge Components by a Coastal Wetland of the US Mid Atlantic

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Coastal wetlands are receiving increased consideration as natural defenses for coastal communities from storm surge. However, there are gaps in storm surge measurements collected in marsh areas during extreme events as well as understanding of storm surge processes. The present study evaluates the importance and variation of different processes (i.e., wave, current, and water level dynamics with respect of the marsh topography and vegetation characteristics) involved in a storm surge over a marsh, assesses how these processes contribute to storm surge attenuation, and quantifies the storm surge attenuation in field conditions. During the Fall of 2015, morphology and vegetation surveys were conducted along a marsh transect in a coastal marsh located at the mouth of the Chesapeake Bay, mainly composed of Spartina alterniflora and Spartina patens. Hydrodynamic surveys were conducted during two storm events. Collected data included wave characteristics, current velocity and direction, and water levels. Data analysis focused on the understanding of the cross-shore evolution of waves, currents and water level, and their influence on the overall storm surge attenuation. Results indicate that the marsh area, despite its short length, attenuates waves and reduces current velocity and water level. Tides have a dominant influence on current direction and velocity, but the presence of vegetation and the marsh morphology contribute to a strong reduction of current velocity over the marsh platform relative to the currents at the marsh front. Wave attenuation varies across the tide cycle which implies a link between wave attenuation and water level and, consequently, storm surge height. Storm surge reduction, here assessed through high water level (HWL) attenuation, is linked to wave attenuation across the front edge of the marsh; this positive trend highlights the reduction of water level height induced by wave setup reduction during wave propagation across the marsh front edge. Water level attenuation rates observed here have a greater range than the rates observed or modeled by other authors, and our results suggest that this is linked to the strong influence of waves in storm surge attenuation over coastal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ackerman, J.D., and A. Okubo. 1993. Reduced mixing in a marine Macrophyte canopy. Functional Ecology 7: 305–309. doi:10.2307/2390209.

    Article  Google Scholar 

  • Anderson, M.E., and J.M. Smith. 2014. Wave attenuation by flexible, idealized salt marsh vegetation. Coastal Engineering 83: 82–92. doi:10.1016/j.coastaleng.2013.10.004.

    Article  Google Scholar 

  • Arkema, K.K., G. Guannel, G. Verutes, S.A. Wood, A. Guerry, M. Ruckelshaus, P. Kareiva, M. Lacayo, and J.M. Silver. 2013. Coastal habitats shield people and property from sea-level rise and storms. Nature Climate Change 3: 913–918. doi:10.1038/nclimate1944.

    Article  Google Scholar 

  • Boller, M.L., and E. Carrington. 2006. In situ measurements of hydrodynamic forces imposed on Chondrus crispus Stackhouse. Journal of Experimental Marine Biology and Ecology 337: 159–170. doi:10.1016/j.jembe.2006.06.011.

    Article  Google Scholar 

  • Bouma, T.J., M.B. De Vries, E. Low, G. Peralta, I.C. Tanczos, J. Van de Koppel, and P.M.J. Herman. 2005. Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes. Ecology 86: 2187–2199.

    Article  Google Scholar 

  • Bouma, T.J., J. van Belzen, T. Balke, Z. Zhu, L. Airoldi, A.J. Blight, A.J. Davies, C. Galvan, S.J. Hawkins, S.P.G. Hoggart, J.L. Lara, I.J. Losada, M. Maza, B. Ondiviela, M.W. Skov, E.M. Strain, R.C. Thompson, S. Yang, B. Zanuttigh, L. Zhang, and P.M.J. Herman. 2014. Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: opportunities & steps to take. Coastal Engineering 87: 147–157. doi:10.1016/j.coastaleng.2013.11.014.Coasts@Risks: THESEUS, a new wave in coastal protection

    Article  Google Scholar 

  • Bradley, K., Houser, C. 2009. Relative velocity of seagrass blades : Implications for wave attenuation in low-energy environments. Journal of Geophysical Research - Earth Surface 114. doi :10.1029/2007JF000951.

  • Bridges, T.S., Wagner, P.W., Burks-Copes, K.A., Bates, M., Collier, Z.A. 2015. Use of natural and nature-based features (NNBF) for coastal resilience (Final Report No. ERDC SR-15-1). USACE-ERDC

  • Committee on Environment, Natural, Resources, and Sustainability, National Science and Technology Council. 2015. Ecosystem-service assessment: research needs for coastal green infrastructure. Executive Office of the President of the United States

  • Corps of Engineers, US Army Engineer District. 1963. Interim survey report: Morgan City, Louisiana and vicinity (No. Serial no. 63). New Orleans, Louisiana

  • Coulombier, T., U. Neumeier, and P. Bernatchez. 2012. Sediment transport in a cold climate salt marsh (St. Lawrence estuary, Canada), the importance of vegetation and waves. Estuarine, Coastal and Shelf Science 101: 64–75. doi:10.1016/j.ecss.2012.02.014.

    Article  Google Scholar 

  • Fonseca, M.S., and W.J. Kenworthy. 1987. Environmental impacts on seagrasses effects of current on photosynthesis and distribution of seagrasses. Aquatic Botany 27: 59–78. doi:10.1016/0304-3770(87)90086-6.

    Article  Google Scholar 

  • Fonseca, M.S., J.S. Fisher, J.C. Zieman, and G.W. Thayer. 1982. Influence of the seagrass, Zostera marina L., on current flow. Estuarine, Coastal and Shelf Science 15: 351–364. doi:10.1016/0272-7714(82)90046-4.

    Article  Google Scholar 

  • Gedan, K.B., M.L. Kirwan, E. Wolanski, E.B. Barbier, and B.R. Silliman. 2011. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change 106: 7–29. doi:10.1007/s10584-010-0003-7.

    Article  Google Scholar 

  • Ghisalberti, M., and H.M. Nepf. 2002. Mixing layers and coherent structures in vegetated aquatic flows. Journal of Geophysical Research, Oceans 107: 3–1. doi:10.1029/2001JC000871.

    Google Scholar 

  • Ghisalberti, M., and H. Nepf. 2009. Shallow flows over a permeable medium: the hydrodynamics of submerged aquatic canopies. Transport in Porous Media 78: 309–326. doi:10.1007/s11242-008-9305-x.

    Article  Google Scholar 

  • Horikawa, K. 1988. Nearshore dynamics and coastal processes : theory, measurement and predictive models, 1–522. Tokyo: University of Tokyo Press.

    Google Scholar 

  • Hu, K., Q. Chen, and H. Wang. 2015. A numerical study of vegetation impact on reducing storm surge by wetlands in a semi-enclosed estuary. Coastal Engineering 95: 66–76. doi:10.1016/j.coastaleng.2014.09.008.

    Article  Google Scholar 

  • Jadhav, R., and Q. Chen. 2012. Field investigation of wave dissipation over salt marsh vegetation during tropical cyclone. Coastal Engineering Proceedings 1(33): 41. doi:10.9753/icce.v33.waves.41.

    Article  Google Scholar 

  • Jago, O.K., Kench, P.S., Brander, W.S. 2007. Field observations of wave-driven water-level gradients across a coral reef flat. Journal of Geophysical Research - Oceans 112. doi:10.1029/2006JC003740.

  • John, B.M., K.G. Shirlal, and S. Rao. 2015. Effect of artificial vegetation on wave attenuation – an experimental investigation. Procedia Eng. 116: 600–606. doi:10.1016/j.proeng.2015.08.331.

    Article  Google Scholar 

  • Knutson, P.L., R.A. Brochu, W.N. Seelig, and M. Inskeep. 1982. Wave damping Inspartina alterniflora marshes. Wetlands 2: 87–104. doi:10.1007/BF03160548.

    Article  Google Scholar 

  • Koch, E.W. 1999. Sediment resuspension in a shallow Thalassia testudinum banks ex König bed. Aquatic Botany 65: 269–280.

    Article  Google Scholar 

  • Koch, E.W., E.B. Barbier, B.R. Silliman, D.J. Reed, G.M. Perillo, S.D. Hacker, E.F. Granek, J.H. Primavera, N. Muthiga, S. Polasky, B.S. Halpern, C.J. Kennedy, C.V. Kappel, and E. Wolanski. 2009. Non-linearity in ecosystem services: temporal and spatial variability in coastal protection. Frontiers in Ecology and the Environment 7: 29–37. doi:10.1890/080126.

    Article  Google Scholar 

  • Krauss, K.W., T.W. Doyle, T.J. Doyle, C.M. Swarzenski, A.S. From, R.H. Day, and W.H. Conner. 2009. Water level observations in mangrove swamps during two hurricanes in Florida. Wetlands 29: 142–149. doi:10.1672/07-232.1.

    Article  Google Scholar 

  • Lara, J.L., M. Maza, B. Ondiviela, J. Trinogga, I.J. Losada, T.J. Bouma, and N. Gordejuela. 2016. Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 1: guidelines for physical modeling. Coastal Engineering 107: 70–83. doi:10.1016/j.coastaleng.2015.09.012.

    Article  Google Scholar 

  • Lavoie, R., J. Deslandes, and F. Proulx. 2016. Assessing the ecological value of wetlands using the MACBETH approach in Quebec City. Journal for Nature Conservation 30: 67–75. doi:10.1016/j.jnc.2016.01.007.

    Article  Google Scholar 

  • Leonard, L.A., and A.L. Croft. 2006. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuarine, Coastal and Shelf Science 69: 325–336. doi:10.1016/j.ecss.2006.05.004.Salt Marsh Geomorphology: Physical and ecological effects on landform

    Article  Google Scholar 

  • Leonard, L.A., and M.E. Luther. 1995. Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography 40: 1474–1484. doi:10.4319/lo.1995.40.8.1474.

    Article  Google Scholar 

  • Leonard, L.A., A.C. Hine, and M.E. Luther. 1995. Surficial sediment transport and deposition processes in a Juncus roemerianus marsh, west-Central Florida. Journal of Coastal Research 11: 322–336.

    Google Scholar 

  • Loder, N.M., J.L. Irish, M.A. Cialone, and T.V. Wamsley. 2009. Sensitivity of hurricane surge to morphological parameters of coastal wetlands. Estuarine, Coastal and Shelf Science 84: 625–636. doi:10.1016/j.ecss.2009.07.036.

    Article  Google Scholar 

  • Lott, N., Ross, T. 2006. 1.2 Tracking and evaluating US billion dollar weather disasters, 1980–2005. Retrieved on March

  • Lovelace, J.K., 1994. Storm-tide elevations produced by hurricane Andrew along the Louisiana Coast, August 25–27, 1992 (No. 94–371). U.S. Geological Survey

  • Marsooli, R., and W. Wu. 2014. Numerical investigation of wave attenuation by vegetation using a 3D RANS model. Advances in Water Resources 74: 245–257. doi:10.1016/j.advwatres.2014.09.012.

    Article  Google Scholar 

  • Maza, M., J.L. Lara, I.J. Losada, B. Ondiviela, J. Trinogga, and T.J. Bouma. 2015. Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 2: experimental analysis. Coastal Engineering 106: 73–86. doi:10.1016/j.coastaleng.2015.09.010.

    Article  Google Scholar 

  • McGee, B.D., Tollett, R.W., Goree, B.B., Farris, G.S., Smith, G.J., Crane, M.P., Demas, C.R., Robbins, L.L., Lavoie, D.L. 2005. Monitoring Hurricane Rita inland storm surge. Science and the Storms: the USGS Response to the Hurricane 257–263

  • McGee, B.D., Goree, B.B., Tollett, R.W., Woodward, B.K., Kress, W.H., 2006. Hurricane Rita surge data, Southwestern Louisiana and Southeastern Texas, September to November 2005. US Geological Survey Data Series 220. https://pubs.usgs.gov/ds/2006/220/.

  • Möller, I., T. Spencer, J.R. French, D. Leggett, and M. Dixon. 1999. Wave transformation over salt marshes: a field and numerical modelling study from North Norfolk, England. Estuarine, Coastal and Shelf Science 49: 411–426.

    Article  Google Scholar 

  • Möller, I., M. Kudella, F. Rupprecht, T. Spencer, M. Paul, B.K. van Wesenbeeck, G. Wolters, K. Jensen, T.J. Bouma, M. Miranda-Lange, and S. Schimmels. 2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience 7: 727–731. doi:10.1038/ngeo2251.

    Article  Google Scholar 

  • Nepf, H.M. 1999. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resources Research 35: 479–489.

    Article  Google Scholar 

  • Nepf, H.M. 2012. Flow and transport in regions with aquatic vegetation. Annual Review of Fluid Mechanics 44: 123–142. doi:10.1146/annurev-fluid-120710-101048.

    Article  Google Scholar 

  • Neumeier, U. 2007. Velocity and turbulence variations at the edge of saltmarshes. Continental Shelf Research 27: 1046–1059. doi:10.1016/j.csr.2005.07.009.

    Article  Google Scholar 

  • Neumeier, U., Ciavola, P. 2004. Flow resistance and associated sedimentary processes in a Spartina maritima Salt-Marsh. Journal of Coastal Research 435–447. doi:10.2112/1551-5036(2004)020[0435:FRAASP]2.0.CO;2

  • Paul, M., and C.L. Amos. 2011. Spatial and seasonal variation in wave attenuation over Zostera noltii. J. Geophys. Res.-Oceans 116: C08019. doi:10.1029/2010JC006797.

    Google Scholar 

  • Paul, M., T. Bouma, and C. Amos. 2012. Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current. Marine Ecology Progress Series 444: 31–41. doi:10.3354/meps09489.

    Article  Google Scholar 

  • Peralta, G., L. van Duren, E. Morris, and T. Bouma. 2008. Consequences of shoot density and stiffness for ecosystem engineering by benthic macrophytes in flow dominated areas: a hydrodynamic flume study. Marine Ecology Progress Series 368: 103–115. doi:10.3354/meps07574.

    Article  Google Scholar 

  • Perry, J.E., Barnard, T.A., Bradshaw, J.G., Friedrichs, C.T., Havens, K.J., Mason, P.A., Priest, W.I., Silberhorn, G.M. 2001. Creating Tidal Salt Marshes in the Chesapeake Bay. Journal of Coastal Research 170–191

  • Resio, D.T., and J.J. Westerink. 2008. Modeling the physics of storm surges. Physics Today 61: 33–38. doi:10.1063/1.2982120.

    Article  Google Scholar 

  • Sénéchal, N., H. Dupuis, P. Bonneton, H. Howa, and R. Pedreros. 2001. Observation of irregular wave transformation in the surf zone over a gently sloping sandy beach on the French Atlantic coastline. Oceanologica Acta 24: 545–556.

    Article  Google Scholar 

  • Sheng, Y.P., A. Lapetina, and G. Ma. 2012. The reduction of storm surge by vegetation canopies: three-dimensional simulations. Geophysical Research Letters 39: L20601. doi:10.1029/2012GL053577.

    Article  Google Scholar 

  • Shepard, C.C., C.M. Crain, and M.W. Beck. 2011. The protective role of coastal marshes: a systematic review and meta-analysis. PloS One 6: e27374. doi:10.1371/journal.pone.0027374.

    Article  CAS  Google Scholar 

  • Spalding, M.D., A.L. McIvor, M.W. Beck, E.W. Koch, I. Möller, D.J. Reed, P. Rubinoff, T. Spencer, T.J. Tolhurst, T.V. Wamsley, B.K. van Wesenbeeck, E. Wolanski, and C.D. Woodroffe. 2014a. Coastal ecosystems: a critical element of risk reduction. Conservation Letters 7: 293–301. doi:10.1111/conl.12074.

    Article  Google Scholar 

  • Spalding, M.D., S. Ruffo, C. Lacambra, I. Meliane, L.Z. Hale, C.C. Shepard, and M.W. Beck. 2014b. The role of ecosystems in coastal protection: adapting to climate change and coastal hazards. Ocean and Coastal Management 90: 50–57. doi:10.1016/j.ocecoaman.2013.09.007.

    Article  Google Scholar 

  • Stark, J., T. Van Oyen, P. Meire, and S. Temmerman. 2015. Observations of tidal and storm surge attenuation in a large tidal marsh. Limnology and Oceanography 60: 1371–1381. doi:10.1002/lno.10104.

    Article  Google Scholar 

  • Stark, J., Y. Plancke, S. Ides, P. Meire, and S. Temmerman. 2016. Coastal flood protection by a combined nature-based and engineering approach: modeling the effects of marsh geometry and surrounding dikes. Estuarine, Coastal and Shelf Science 175: 34–35. doi:10.1016/j.ecss.2016.03.027.

    Article  Google Scholar 

  • Sutton-Grier, A.E., K. Wowk, and H. Bamford. 2015. Future of our coasts: the potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environmental Science & Policy 51: 137–148. doi:10.1016/j.envsci.2015.04.006.

    Article  Google Scholar 

  • Thomas, R.E., M.F. Johnson, L.E. Frostick, D.R. Parsons, T.J. Bouma, J.T. Dijkstra, O. Eiff, S. Gobert, P.-Y. Henry, P. Kemp, S.J. Mclelland, F.Y. Moulin, D. Myrhaug, A. Neyts, M. Paul, W.E. Penning, S. Puijalon, S.P. Rice, A. Stanica, D. Tagliapietra, M. Tal, A. Tørum, and M.I. Vousdoukas. 2014. Physical modelling of water, fauna and flora: knowledge gaps, avenues for future research and infrastructural needs. Journal of Hydraulic Research 52: 311–325. doi:10.1080/00221686.2013.876453.

    Article  Google Scholar 

  • Tschirky, P., Hall, K., Turcke, D. 2001. Wave attenuation by emergent wetland vegetation. In: Coastal engineering conference. ASCE American Society Of Civil Engineers, pp. 865–877

  • Wamsley, T.V., M.A. Cialone, J.M. Smith, J.H. Atkinson, and J.D. Rosati. 2010. The potential of wetlands in reducing storm surge. Ocean Engineering 37: 59–68. doi:10.1016/j.oceaneng.2009.07.018.A Forensic Analysis of Hurricane Katrina’s Impact: Methods and Findings

    Article  Google Scholar 

  • Ward, L.G., W. Michael Kemp, and W.R. Boynton. 1984. The influence of waves and seagrass communities on suspended particulates in an estuarine embayment. Marine Geology 59: 85–103. doi:10.1016/0025-3227(84)90089-6.

    Article  Google Scholar 

  • Wu, F.-C., H.W. Shen, and Y.-J. Chou. 1999. Variation of roughness coefficients for Unsubmerged and submerged vegetation. Journal of Hydraulic Engineering 125: 934–942. doi:10.1061/(ASCE)0733-9429(1999)125:9(934).

    Article  Google Scholar 

  • Xue, B., M. Keming, Y. Liu, Z. Jieyu, and Z. Xiaolei. 2008. Differences of ecological functions inside and outside the wetland nature reserves in Sanjiang plain. China. Acta Ecol. Sin. 28: 620–626. doi:10.1016/S1872-2032(08)60028-1.

    Article  Google Scholar 

  • Zhang, K., H. Liu, Y. Li, H. Xu, J. Shen, J. Rhome, and T.J. Smith III. 2012. The role of mangroves in attenuating storm surges. Estuarine, Coastal and Shelf Science 102–103: 11–23. doi:10.1016/j.ecss.2012.02.021.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referees for their time and effort in providing constructive input. This material is based upon work supported by the National Fish and Wildlife Foundation and the US Department of the Interior under Grant No. 43932. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US Government or the National Fish and Wildlife Foundation and its funding sources. Mention of trade names or commercial products does not constitute their endorsement by the US Government, or the National Fish and Wildlife Foundation or its funding sources. This material is also based upon work supported by the National Science Foundation under Grant No. SES-1331399. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. This research was also supported in part by the Thomas F. and Kate Miller Jeffress Memorial Trust, Bank of America, Trustee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Eleonore Paquier.

Additional information

Communicated by David K. Ralston

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paquier, AE., Haddad, J., Lawler, S. et al. Quantification of the Attenuation of Storm Surge Components by a Coastal Wetland of the US Mid Atlantic. Estuaries and Coasts 40, 930–946 (2017). https://doi.org/10.1007/s12237-016-0190-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-016-0190-1

Keywords

Navigation