Skip to main content

Advertisement

Log in

Anaerobic Carbon Mineralisation Through Sulphate Reduction in the Inner Shelf Sediments of Eastern Arabian Sea

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Monsoon-induced coastal upwelling, land run-off, benthic and atmospheric inputs make the western Indian shelf waters biologically productive that is expected to lead to high rates of mineralisation of organic matter (OM) in the sediments. Dissimilatory sulphate reduction (SR) is a major pathway of OM mineralisation in near-shore marine sediments owing to depletion of other energetically more profitable electron acceptors (O2, NO3 , Mn and Fe oxides) within few millimetres of the sediment-water interface. We carried out first ever study to quantify SR rates in the inner shelf sediments off Goa (central west coast of India) using the 35S radiotracer technique. The highest rates were recorded in the upper 10 cm of the sediment cores and decreased gradually thereafter below detection. Despite significant SR activity in the upper ∼12 to 21 cm at most of the sites, pore water sulphate concentrations generally did not show much variation with depth. The depth integrated SR rate (0.066–0.46 mol m−2 year−1) decreased with increasing water depth. Free sulphide was present in low concentrations (0–3 μM) in pore waters at shallow stations (depth <30 m). However, high build-up of sulphide (100–600 μM) in pore waters was observed at two deeper stations (depths 39 and 48 m), 7–11 cm below the sediment-water interface. The total iron content of the sediment decreased from ∼7 to 5 % from the shallowest to the deepest station. The high pyrite content indicates that the shelf sediments act as a sink for sulphide accounting for the low free sulphide levels in pore water. In the moderately organic rich (2–3.5 %) sediments off Goa, the measured SR rates are much lower than those reported from other upwelling areas, especially off Namibia and Peru. The amount of organic carbon remineralised via sulphate reduction was ∼0.52 mol m−2 year−1. With an estimated average organic carbon accumulation rate of ∼5.6 (±0.5) mol m−2 year−1, it appears that the bulk of organic matter gets preserved in sediments in the study region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agnihotri, R., S. Kurian, M. Fernandes, K. Reshma, W. D’Souza, and S.W.A. Naqvi. 2008. Variability of subsurface denitrification and surface productivity in the coastal eastern Arabian Sea over the past seven centuries. Holocene 18: 1–10.

    Article  Google Scholar 

  • Brüchert, V., B.B. Jørgensen, K. Neumann, D. Riechmann, M. Schlösser, and H. Schulz. 2003. Regulation of bacterial Sulphate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochimica et Cosmochimica Acta 67(23): 4505–4518.

    Article  Google Scholar 

  • Canfield, D.E. 1989. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep Sea Research 36: 121–138.

    Article  CAS  Google Scholar 

  • Canfield, D.E., B. Thamdrup, and J.W. Hansen. 1993a. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulphate reduction. Geochimica et Cosmochimica Acta 57(16): 3867–3883.

    Article  CAS  Google Scholar 

  • Canfield, D.E., B.B. Jorgensen, H. Fossing, R. Glud, J. Gundersen, N.B. Ramsing, B. Thamdrup, J.W. Hansen, L.P. Nielsen, and P.O.J. Hall. 1993b. Pathways of organic-carbon oxidation in three continental-margin sediments. Marine Geology 113(1–2): 27–40.

    Article  CAS  Google Scholar 

  • Cline, J.D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography 14: 454–458.

    Article  CAS  Google Scholar 

  • Cowie, G. 2005. The biogeochemistry of Arabian Sea surficial sediments: a review of recent studies. Progress in Oceanography 65: 260–289.

    Article  Google Scholar 

  • Cowie, G., S. Mowbray, S. Kurian, A. Sarkar, C. White, A. Anderson, and H. Kitazato. 2014. Comparative organic geochemistry of Indian margin (Arabian Sea) sediments: estuary to continental slope. Biogeosciences 11(23): 6683–6696.

    Article  Google Scholar 

  • Ferdelman, T.G., C. Lee, S. Pantoia, J. Harder, B. Bebout, and H. Fossing. 1997. Sulphate reduction and methanogenesis inThioploca-dominated sediment off the coast of Chile. Geochimica et Cosmochimica Acta 61: 3065–3079.

    Article  CAS  Google Scholar 

  • Ferdelman T.G., H. Fossing, K. Neumann. 1999. Sulphate reduction in surface sediments of the southeast Atlantic continental margin between 15038′S and 27057′S (Angola and Namibia). Limnology and Oceanography: 650–661.

  • Folk, R.L. 1968. Petrology of sedimentary rocks, 170. Austin: Hemphils, Drawer’s M. University Station.

    Google Scholar 

  • Fossing, H. 1990. Sulphate reduction in shelf sediments in the upwelling region off Central Peru. Continental Shelf Research 10(4): 355–367.

    Article  Google Scholar 

  • Fossing, H., V.A. Gallardoi, B.B. Jorgensen, M. Hiittel, L.P. Nielsenl, H. Schulz, and A. Teske. 1995. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature 374: 20.

    Article  Google Scholar 

  • Fossing, H., T.G. Ferdelman, and P. Berg. 2000. Sulphate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia). Geochimica et Cosmochimica Acta 64: 897–910.

    Article  CAS  Google Scholar 

  • Grasshoff K., M. Ehrhardt, K. Kremling. 1983. Methods of seawater analysis. Verlag Chemie, 419.

  • Hartnett, H.E., and A.H. Devol. 2003. Role of a strong oxygen-deficient zone in the preservation and degradation of organic matter: a carbon budget for the continental margins of northwest Mexico and Washington State. Geochimica et Cosmochimica Acta 67(2): 247–262.

    Article  CAS  Google Scholar 

  • Hedges, J.I., and R.G. Keil. 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry 49: 81–115.

    Article  CAS  Google Scholar 

  • Howarth, R.W., and B.B. Jorgensen. 1984. Formation of 35S labelled elemental sulfur and pyrite in coastal marine sediments (limfjorden and Kysing Fjord, Denmark) during short term 35SO4 2− reduction measurements. Geochimica et Cosmochimica Acta 48: 1807–1818.

    Article  CAS  Google Scholar 

  • Iversen, N., and B.B. Jørgensen. 1985. Anaerobic methane oxidation rates at the sulfate–methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnology and Oceanography 30: 944–955.

    Article  CAS  Google Scholar 

  • Jahnke, R.A. 1996. The global flux of particulate organic carbon: areal distribution and magnitude. Global Biogeochemical Cycles 10: 71–88.

    Article  CAS  Google Scholar 

  • Jorgensen, B.B. 1978. A comparison of methods for the quantification of bacterial sulphate reduction in coastal marine sediments 1. Measurement with radiotracer techniques. Geomicrobiology Journal 1(1): 11–27.

    Article  Google Scholar 

  • Jørgensen, B.B. 1982. Mineralisation of organic-matter in the sea-bed—the role of sulphate reduction. Nature 296(5858): 643–645.

    Article  Google Scholar 

  • Jorgensen, B.B., and T. Fenchel. 1974. The sulfur cycle of a marine sediment model system. Marine Biology 24: 189–201.

    Article  CAS  Google Scholar 

  • Kallmeyer J., T.G. Ferdelman, A. Weber, H. Fossing, B.B. Jorgensen. 2004. A cold chromium distillation procedure for radiolabeled sulfide applied to sulphate reduction measurements. Limnology and Oceanography: 171–180.

  • Kraal, P., C.P. Slomp, D.C. Reed, G.-J. Reichart, and S.W. Poulton. 2012. Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of the northern Arabian Sea. Biogeosciences Discussions 9: 3829–3880.

    Article  Google Scholar 

  • Kristensen, E. 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426: 1–24.

    Article  CAS  Google Scholar 

  • Kurian, S., R. Agnihotri, D.V. Borole, S.W.A. Naqvi, A.M. Ferreira, and C. Vale. 2009. Possible solar control on primary production along the Indian west coast on decadal to centennial timescale. Journal of Quaternary Science 24: 109–116.

    Article  Google Scholar 

  • Laluraj, C.M., K.K. Balachandran, and P. Sabu. 2012. Enhanced biological production in the southeastern Arabian Sea during spring intermonsoon. Advances in Oceanography and Limnology 3(2): 133–145.

    Article  CAS  Google Scholar 

  • Law, G.T.W., T.M. Shimmield, G.B. Shimmield, G.L. Cowie, E.R. Breuer, and S.M. Harvey. 2009. Manganese, iron, and sulphur cycling on the Pakistan margin. Deep-Sea Research Part II - Topical Studies in Oceanography 56: 305–323. doi:10.1016/j.dsr2.2008.06.011.

    Article  CAS  Google Scholar 

  • Lückge, A., M. Ercegovac, H. Strauss, and R. Littke. 1999. Early diagenetic alteration of organic matter by sulphate reduction in Quaternary sediments from the northeastern Arabian Sea. Marine Geology 158(1–4): 1–13.

    Article  Google Scholar 

  • Maya, M.V., S.G. Karapurkar, H. Naik, R. Roy, D.M. Shenoy, and S.W.A. Naqvi. 2011. Intra-annual variability of carbon and nitrogen stable isotopes in suspended organic matter in waters of the western continental shelf of India. Biogeosciences 8: 3441–3456.

    Article  CAS  Google Scholar 

  • Mazumdar, A., A. Peketi, P. Dewangan, F. Badesab, T. Ramprasad, M.V. Ramana, D.J. Patil, and A. Dayal. 2009. Shallow gas charged sediments off the Indian west coast: Genesis and distribution. Marine Geology 267: 71–85.

    Article  CAS  Google Scholar 

  • McManus, J., W.M. Berelson, K.H. Coalec, K.S. Johnson, and T.E. Kilgore. 1997. Phosphorus regeneration in continental margin sediments. Geochimica et Cosmochimica Acta 61: 2891–2902.

    Article  CAS  Google Scholar 

  • Naqvi S.W.A., D.A. Jayakumar, R.V. Narvekar, H. Naik, V.V.S.S. Sarma, W. D’Souza, S. Joseph, M.D. George. 2000. Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature: 408.

  • Naqvi, S.W.A., P.V. Narvekar, and E. Desa. 2006. Coastal biogeochemical processes in the north Indian Ocean (14, S-W). In The Sea: ideas and observations on progress in the study of the seas. Vol. 14: Interdisciplinary regional studies and syntheses. Part A, ed. A.R. Robinson and K.H. Brink, 723–781. Cambridge: Harvard University Press.

    Google Scholar 

  • Naqvi, S.W.A., H. Naik, A. Jayakumar, A.K. Pratihary, G. Narvekar, S. Kurian, R. Agnihotri, M.S. Shailaja, and P. Narvekar. 2009. Seasonal anoxia over the western continental shelf. Indian Ocean Biogeochemical Processes and Ecological variability. Geophysical Monograph Series 185: 333–345.

    CAS  Google Scholar 

  • Naqvi, S.W.A., H.W. Bange, L. Farías, P.M.S. Monteiro, M.I. Scranton, and J. Zhang. 2010. Marine hypoxia/anoxia as a source of CH4and N2O. Biogeosciences 7(7): 2159–2190.

    Article  CAS  Google Scholar 

  • Paropkari, A.L., C. Prakash Babu, and A. Mascarenhas. 1992a. A critical evaluation of depositional parameters controlling the variability of organic carbon in Arabian Sea sediments. Marine Geology 107: 213–220. doi:10.1016/0025-3227(92)90168-H.

    Article  CAS  Google Scholar 

  • Paropkari, A.L., C.P. Babu, and A. Mascarenhas. 1992b. New evidence for enhanced preservation of organic carbon in contact with the oxygen minimum zone on the western slope of India. Marine Geology 111: 7–13.

    Article  Google Scholar 

  • Pratihary, A.K., S.W.A. Naqvi, G. Narvenkar, S. Kurian, H. Naik, R. Naik, and B.R. Manjunatha. 2014. Benthic mineralization and nutrient exchange over the inner continental shelf of western India. Biogeosciences 11: 2771–2791.

    Article  CAS  Google Scholar 

  • Raiswell, R., and D.E. Canfield. 1998. Sources of iron for pyrite formation in marine sediments.. doi:10.2475/ajs.298.3.219.

    Google Scholar 

  • Redfield, A.C., B.H. Ketchum, and F.A. Richards. 1963. The influence of organisms on the composition of sea water. In The sea, ed. M.N. Hill, 26–77. New York: Wiley.

    Google Scholar 

  • Rickard, D., and G.W. Luther. 1997. Kinetics of pyrite formation by the H2S oxidation of iron(II) mono- sulfide in aqueous solutions between 25 and 125°C: the mechanism. Geochimica et Cosmochimica Acta 61: 135–147.

    Article  CAS  Google Scholar 

  • Rozan, T.F., M. Taillefert, R.E. Trouwborst, B.T. Glazer, S. Ma, J. Herszage, L.M. Valdes, K.S. Price, and G.W. Luther. 2002. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms. Limnology and Oceanography 45: 1346–1354.

    Article  Google Scholar 

  • Schubert, C.J., T.G. Ferdelman, and B. Strotmann. 2000. Organic matter composition and sulphate reduction rates in sediments off Chile. Organic Geochemistry 31: 351–361.

    Article  CAS  Google Scholar 

  • Schulz, H.N., T. Brinkhoff, T.G. Ferdelman, M. Hernández Mariné, A. Teske, and B.B. Jørgensen. 1999. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284(5413): 493–495.

    Article  CAS  Google Scholar 

  • Seeberg-Elverfeldt, J., M. Schluter, T. Feseker, and M. Kolling. 2005. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnology and Oceanography: Methods 3: 361–371. doi:10.1016/S0012-821x(02)01064-6.

    Article  Google Scholar 

  • Thang, N.M., V. Brüchert, M. Formolo, G. Wegener, L. Ginters, B.B. Jørgensen, and T.G. Ferdelman. 2013. The impact of sediment and carbon fluxes on the biogeochemistry of methane and sulfur in littoral Baltic Sea sediments (Himmerfjärden, Sweden). Estuaries and Coasts 36(1): 98–115. doi:10.1007/s12237-012-9557-0.

    Article  CAS  Google Scholar 

  • Westrich, J.T., and R.A. Berner. 1984. The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnology and Oceanography 29: 236–249.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Captain, Chief Scientist Dr. D.M. Shenoy and the crew of RV Sindhu Sankalp (cruise SSK 56) for the sample collection. Mr. B.R. Thorat is thanked for his help in sampling. We are grateful to Dr. Timothy Ferdelman from Max Planck Institute, Bremen, Germany, for training R. Naik in SRR measurements. Dr. Amit Sarkar helped in designing the experimental set up. We thank Dr. S. Kurian for providing sedimentation rate data and ICP analysis, and Dr. D.M Shenoy for physicochemical data. Mrs. S. Karapurkar and Dr. P. Kessarkar are thanked for their help in organic carbon and grain size analyses. We are grateful to Dr. A. K. Pratihary and Dr. S. Kurian for their help in manuscript preparation. R. Naik and J. Araujo thank CSIR and UGC respectively for providing research fellowship. This work was funded through SIBER India project (GAP 2425, funded from MoEs, Delhi), and CSIR funded INDIAS IDEA project (PSC 0108). This is NIO contribution number 5919.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richita Naik.

Additional information

Communicated by Marianne Holmer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, R., Naqvi, S.W.A. & Araujo, J. Anaerobic Carbon Mineralisation Through Sulphate Reduction in the Inner Shelf Sediments of Eastern Arabian Sea. Estuaries and Coasts 40, 134–144 (2017). https://doi.org/10.1007/s12237-016-0130-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-016-0130-0

Keywords

Navigation