Skip to main content
Log in

Structural and Functional Composition of Benthic Nematode Assemblages During a Natural Recovery Process of Zostera noltii Seagrass Beds

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

In 2008, the stable seagrass beds of the Mira estuary (SW Portugal) disappeared completely; however, during 2009, they have begun to present early symptoms of natural recovery, characterised by a strongly heterogeneous distribution. This study was designed to investigate the spatial and temporal variability patterns of species composition, densities and trophic composition of the benthic nematode assemblages in this early recovery process, at two sampling sites with three stations each and at five sampling occasions. Because of the erratic and highly patchy seagrass recovery and the high environmental similarity of the two sampling sites, we expected within-site variability in nematode assemblages to exceed between-site variability. However, contrary to that expectation, whilst nematode genus composition was broadly similar between sites, nematode densities differed significantly between sites, and this between-site variability exceeded within-site variability. This may be linked to differences in the Zostera recovery patterns between both sites. In addition, no clear temporal patterns of nematode density, trophic composition and diversity were evident. Nematode assemblages generally resembled those of other estuarine muddy intertidal areas, which have a high tolerance of stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adão, H. 2004. Dynamics of meiofauna communities in association with Zostera noltii seagrass beds in the Mira estuary (SW Portugal). University of Évora.

  • Adão, H., A. Alves, J. Patricio, J. Neto, M. Costa, and J. Marques. 2009. Spatial distribution of subtidal Nematoda communities along the salinity gradient in southern European estuaries. Acta Oecologica-International Journal of Ecology 35: 287–300.

    Article  Google Scholar 

  • Alongi, D.M. 1987. Intertidal zonation and seasonality of meiobenthos in tropical mangrove estuaries. Marine Biology 95: 447–458.

    Article  Google Scholar 

  • Alves, A.S., H. Adao, T.J. Ferrero, J.C. Marques, M.J. Costa, and J. Patricio. 2013. Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: the use of nematodes in ecological quality assessment. Ecological Indicators 24: 462–475.

    Article  Google Scholar 

  • Anderson, M.J., R.N. Gorley, and K.R. Clarke. 2008. PERMANOVA A+ for PRIMER: guide to software and statistical methods. Plymouth: PRIMER-E.

    Google Scholar 

  • Ansari, Z.A., and A.H. Parulekar. 1993. Distribution, abundance and ecology of the meiofauna in a tropical estuary along the west coast of India. Hydrobiologia 262: 115–126.

    Article  Google Scholar 

  • Armenteros, M., A. Ruiz-Abierno, R. Fernandez-Garces, J.A. Perez-Garcia, L. Diaz-Asencio, M. Vincx, and W. Decraemer. 2009. Biodiversity patterns of free-living marine nematodes in a tropical bay: Cienfuegos, Caribbean Sea. Estuarine, Coastal and Shelf Science 85: 179–189.

    Article  CAS  Google Scholar 

  • Aryuthaka, C., and T. Kikuchi. 1996. Sediment meiobenthos community in the seagrass (Zostera marina L.) bed and its vicinity in Amakusa, south Japan. I. Spatial and seasonal variation of nematoda communities. Amakusa Marine Biological Laboratory 12: 79–107.

    Google Scholar 

  • Austen, M.C., and S. Widdicombe. 2006. Comparison of the response of meio- and macrobenthos to disturbance and organic enrichment. Journal of Experimental Marine Biology and Ecology 330: 96–104.

    Article  Google Scholar 

  • Bell, S.S., R.A. Brooks, B.D. Robbins, M.S. Fonseca, and M.O. Hall. 2001. Faunal response to fragmentation in seagrass habitats: implications for seagrass conservation. Biological Conservation 100: 115–123.

    Article  Google Scholar 

  • Bianchelli, S., C. Gambi, M. Mea, A. Pusceddu, and R. Danovaro. 2013. Nematode diversity patterns at different spatial scales in bathyal sediments of the Mediterranean Sea. Biogeosciences 10: 5465–5479.

    Article  Google Scholar 

  • Bongers, T. 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83: 14–19.

    Article  Google Scholar 

  • Bongers, T., R. Alkemade, and G.W. Yeates. 1991. Interpretation of disturbance-induced maturity decrease in marine nematode assemblages by means of the maturity index. Marine Ecology Progress Series 76: 135–142.

    Article  Google Scholar 

  • Bongers, T., and M. Bongers. 1998. Functional diversity of nematodes. Applied Soil Ecology 10: 239–251.

    Article  Google Scholar 

  • Borja, A., D.M. Dauer, M. Elliott, and C.A. Simenstad. 2010. Medium- and long-term recovery of estuarine and coastal ecosystems: patterns, rates and restoration effectiveness. Estuaries and Coasts 33: 1249–1260.

    Article  Google Scholar 

  • Boström, C., and E. Bonsdorff. 1997. Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. Journal of Sea Research 37: 153–166.

    Article  Google Scholar 

  • Boström, C., E.L. Jackson, and C.A. Simenstad. 2006. Seagrass landscapes and their effects on associated fauna: a review. Estuarine, Coastal and Shelf Science 68: 383–403.

    Article  Google Scholar 

  • Bouvy, M., and J. Soyer. 1989. Benthic seasonality in an intertidal mud flat at Kerguelen Islands (Austral Ocean). The relationships between meiofaunal abundance and their potential microbial food. Polar Biology 10: 19–27.

    Article  Google Scholar 

  • Bouwman, L.A., K. Romeyn, D.R. Kremer, and F.B. Vanes. 1984. Occurrence and feeding biology of some nematode species in estuarine Aufwuchs communities.1. Cahiers de Biologie Marine 25: 287–303.

    Google Scholar 

  • Brown, A.C., and A. McLachlan. 1990. Ecology of sandy shores. Amsterdam: Elsevier.

    Google Scholar 

  • Cabaço, S., R. Machas, V. Vieira, and R. Santos. 2008. Impacts of urban wastewater discharge on seagrass meadows (Zostera noltii). Estuarine, Coastal and Shelf Science 78: 1–13.

    Article  Google Scholar 

  • Castel, J., L. Pj, V. Escaravage, I. Auby, and M.E. Garcia. 1989. Influence of seagrass beds and oyster parks on the abundance and biomass patterns of meiobenthos and macrobenthos in tidal flats. Estuarine, Coastal and Shelf Science 28: 71–85.

    Article  Google Scholar 

  • Clarke, K., and M. Ainsworth. 1993. A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92: 205–219.

    Article  Google Scholar 

  • Clarke, K.R., and R.H. Green. 1988. Statistical design and analysis for a biological effects study. Marine Ecology Progress Series 46: 213–226.

    Article  Google Scholar 

  • Clarke, K.R., and R.M. Warwick. 2001. Changes in marine communities: an approach to statistical analysis and interpretation.

  • Connolly, R.M. 1997. Differences in composition of small, motile invertebrate assemblages from seagrass and unvegetated habitats in a southern Australian estuary. Hydrobiologia 346: 137–148.

    Article  Google Scholar 

  • Costa, M.J., F. Catarino, and A. Bettencourt. 2001. The role of salt marshes in the Mira estuary (Portugal). Wetlands Ecology and Management 9: 121–134.

    Article  Google Scholar 

  • Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. O’Neill, J. Paruelo, R. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.

    Article  CAS  Google Scholar 

  • Coull, B.C. 1988. The ecology of marine meiofauna. In Introduction to the study of meiofauna, ed. R.P. Higgins and H. Thiel. Washington: Smithsonian Institute Press.

    Google Scholar 

  • Cunha, A.H., J. Assis, and E. Serrão. 2013. Seagrass in Portugal: a most endangered marine habitat. Aquatic Botany 104: 193–203.

    Article  Google Scholar 

  • Danovaro, R. 1996. Detritus–bacteria–meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean. Marine Biology 127: 1–13.

    Article  CAS  Google Scholar 

  • Danovaro, R., and C. Gambi. 2002. Biodiversity and trophic structure of nematode assemblages in seagrass systems: evidence for a coupling with changes in food availability. Marine Biology 141: 667–677.

    Article  CAS  Google Scholar 

  • Danovaro, R., C. Gambi, A. Dell’Anno, C. Corinaidesi, S. Fraschetti, A. Vanreusel, M. Vincx, and A.J. Gooday. 2008. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Current Biology 18: 1–8.

    Article  CAS  Google Scholar 

  • Danovaro, R., C. Gambi, and N. Della Croce. 2002. Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean. Deep-Sea Research Part I-Oceanographic Research Papers 49: 843–857.

    Article  CAS  Google Scholar 

  • De Troch, M., F. Fiers, and M. Vincx. 2000. Range extension and microhabitat of Lightiella incisa (Cephalocarida). Journal of Zoology 251: 199–204.

    Article  Google Scholar 

  • Edgar, G.J., C. Shaw, W. Gf, and L.S. Hammond. 1994. Comparisons of species richness, size structure and productions of benthos in vegetated and unvegetated habitats in Western Port, Victoria. Journal of Experimental Marine Biology and Ecology 176: 201–226.

    Article  Google Scholar 

  • Escaravage, V., M.E. Garcia, and J. Castel. 1989. The distribution of meiofauna and its contribution to detritic pathways in tidal flats (Arcachon Bay, France). Scientia Marina 53: 551-559.

  • Eskin, R., and B. Coull. 1987. Seasonal and three-year variability, of meiobenthic nematode populations at two estuarine sites. Marine Ecology Progress Series 41: 295–303.

    Article  Google Scholar 

  • Ferrero, T., N. Debenham, and P. Lambshead. 2008. The nematodes of the Thames estuary: assemblage structure and biodiversity, with a test of Attrill’s linear model. Estuarine, Coastal and Shelf Science 79: 409–418.

    Article  Google Scholar 

  • Fisher, R., and M.J. Sheaves. 2003. Community structure and spatial variability of marine nematodes in tropical Australian pioneer seagrass meadows. Hydrobiologia 495: 143–158.

    Article  Google Scholar 

  • Fonseca, G., P. Hutchings, and F. Gallucci. 2011. Meiobenthic communities of seagrass beds (Zostera capricorni) and unvegetated sediments along the coast of New South Wales, Australia. Estuarine, Coastal and Shelf Science 91: 69–77.

    Article  Google Scholar 

  • Fourqurean, J.W., and L.M. Rutten. 2004. The impact of Hurricane Georges on soft-bottom, backreef communities: site- and species-specific effects in south Florida seagrass beds. Bulletin of Marine Science 75: 239–257.

    Google Scholar 

  • Gambi, C.S., S. Bianchelli, M. Pérez, O. Invers, J.M. Ruiz, and R. Danovaro. 2009. Biodiversity response to experimental induced hypoxic–anoxic conditions in seagrass sediments. Biodiversity and Conservation 18: 33–54.

    Article  Google Scholar 

  • Gyedu-Ababio, T., and D. Baird. 2006. Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicology and Environmental Safety 63: 443–450.

    Article  CAS  Google Scholar 

  • Heck, K.L., K.W. Abele, C.T. Roman, and M.P. Fahay. 1995. Composition, abundance, biomass and production of macrofauna in a New England estuary: comparisons among eelgrass meadows and other nursery habitats. Estuaries 18: 379–389.

    Article  Google Scholar 

  • Heip, C., M. Vincx, and G. Vranken. 1985. The ecology of free-living nematodes. Oceanographic Marine Biology Annual Review 23: 399–489.

    Google Scholar 

  • Hemminga, M.A., and C.M. Duarte. 2000. Seagrass ecology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hirst, J.A., and M.J. Attrill. 2008. Small is beautiful: an inverted view of habitat fragmentation in seagrass beds. Estuarine, Coastal and Shelf Science 78: 811–818.

    Article  Google Scholar 

  • Hughes, A.R., S.L. Williams, C.M. Duarte, K.L. Heck, and M. Waycott. 2009. Associations of concern: declining seagrasses and threatened dependent species. Frontiers in Ecology and the Environment 7: 242–246.

    Article  Google Scholar 

  • Jensen, P. 1984. Ecology of benthic and epiphytic nematodes in brackish waters. Hydrobiologia 108: 201–217.

    Article  Google Scholar 

  • Li, J., M. Vincx, P.M.J. Herman, and C.H. Heip. 1997. Monitoring meiobenthos using cm-, m- and km-scales in the Southern Bight of the North Sea. Marine Environmental Research 34: 265–278.

    Article  CAS  Google Scholar 

  • Losi, V., M. Moreno, L. Gaozza, L. Vezzulli, M. Fabiano, and G. Albertelli. 2013. Nematode biomass and allometric attributes as indicators of environmental quality in a Mediterranean harbour (Ligurian Sea, Italy). Ecological Indicators 30: 80–89.

    Article  CAS  Google Scholar 

  • Marbà, N., R. Santiago, E. Díaz-Almela, E. Álvarez, and C.M. Duarte. 2006. Seagrass (Posidonia oceanica) vertical growth as an early indicator of fish farm-derived stress. Estuarine, Coastal and Shelf Science 67: 475–483.

    Article  Google Scholar 

  • Materatski, P., A. Vafeiadou, R. Ribeiro, T. Moens, and H. Adão. 2015. A comparative analysis of benthic nematode assemblages from Zostera noltii beds before and after a major vegetation collapse. Estuarine, Coastal and Shelf Science 167: 256–268.

    Article  Google Scholar 

  • Moens, T., S. Bouillon, and F. Gallucci. 2005. Dual stable isotope abundances unravel trophic position of estuarine nematodes. Journal of the Marine Biological Association of the UK 85: 1401–1407.

    Article  CAS  Google Scholar 

  • Moens, T., D. Van Gansbeke, and M. Vincx. 1999. Linking estuarine nematodes to their suspected food. A case study from the Westerschelde estuary (south-west Netherlands). Journal of the Marine Biological Association of the UK 79: 1017–1027.

    Article  Google Scholar 

  • Moens, T., A.M. Vafeiadou, E. De Geyter, P. Vanormelingen, K. Sabbe, and M. De Troch. 2014. Diatom feeding across trophic guilds in tidal flat nematodes, and the importance of diatom cell size. Journal of Sea Research 92: 125–133.

    Article  Google Scholar 

  • Moens, T., U. Braeckman, S. Derycke, G. Fonseca, F. Gallucci, R. Gingold, K. Guilini, J. Ingels, D. Leduc, J. Vanaverbeke, C. Van Colen, A. Vanreusel, and M. Vincx. 2013. Ecology of free-living marine nematodes. In: Schmidt-Rhaesa, A. (ed.), Handbook of Zoology. Gastrotricha, Cycloneuralia and Gnathifera. Vol. 2. Nematoda. De Gruyter, Berlin: 109-152.

  • Moens, T., and M. Vincx. 1997. Observations on the feeding ecology of estuarine nematodes. Journal of the Marine Biological Association of the UK 77: 211–227.

    Article  Google Scholar 

  • Moreno, M., T.J. Ferrero, I. Gallizia, L. Vezzulli, G. Albertelli, and M. Fabiano. 2008. An assessment of the spatial heterogeneity of environmental disturbance within an enclosed harbour through the analysis of meiofauna and nematode assemblages. Estuarine, Coastal and Shelf Science 77: 565–576.

    Article  Google Scholar 

  • Moreno, M., F. Semprucci, L. Vezzulli, M. Balsamo, M. Fabiano, and G. Albertelli. 2011. The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecological Indicators 11: 328–336.

    Article  Google Scholar 

  • Norling, K., R. Rosenberg, S. Hulth, A. Grémare, and E. Bonsdorff. 2007. Importance of functional biodiversity and species-specific traits of benthic fauna for ecosystem functions in marine sediment. Marine Ecology Progress Series 332: 11–23.

    Article  CAS  Google Scholar 

  • Ólafsson, E., S. Carlstrom, and S. Ndaro. 2000. Meiobenthos of hypersaline tropical mangrove sediment in relation to spring tide inundation. Hydrobiologia 426: 57–64.

    Article  Google Scholar 

  • Ólafsson, E., and R. Elmgren. 1997. Seasonal dynamics of subtittoral meiobenthos in relation to phytoplankton sedimentation in the Baltic Sea. Estuarine, Coastal and Shelf Science 45: 149–164.

    Article  Google Scholar 

  • Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck, A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, S. Olyarnik, F.T. Short, M. Waycott, and S.L. Williams. 2006. A global crisis for seagrass ecosystems. Bioscience 56: 987–996.

    Article  Google Scholar 

  • Patrício, J., H. Adão, J. Neto, A. Alves, W. Traunspurger, and J. Marques. 2012. Do nematode and macrofauna assemblages provide similar ecological assessment information? Ecological Indicators 14: 124–137.

    Article  Google Scholar 

  • Paula, J., I.C. Silva, S.M. Francisco, and A.A.V. Flores. 2006. The use of artificial benthic collectors for assessment of spatial patterns of settlement of megalopae of Carcinus maenas (L.) (Brachyura: Portunidae) in the lower Mira Estuary, Portugal. Hydrobiologia 557: 69–77.

    Article  Google Scholar 

  • Platt, H.M., and R.M. Warwick. 1988. Free living marine nematodes. Part II: British chromadorids. Pictorial key to world genera and notes for the identification of British species. Leiden.

  • Rzeznik-Orignac, J., D. Fichet, and G. Boucher. 2003. Spatio-temporal structure of the nematode assemblages of the Brouage mudflat (Marennes Oléron, France). Estuarine, Coastal and Shelf Science 58: 77–88.

    Article  CAS  Google Scholar 

  • Schizas, N.V., and T.C. Shirley. 1996. Seasonal changes in structure of Alaskan intertidal meiofaunal assemblage. Marine Ecology Progress Series 133: 115–124.

    Article  Google Scholar 

  • Schratzberger, M., J.M. Gee, H.L. Rees, and S.E. Boyd. 2000. The structure and taxonomic composition of sublittoral meiofauna assemblages as an indicator of the status of marine environments. Journal of the Marine Biological Association of the UK 80: 969–980.

    Article  Google Scholar 

  • Schratzberger, M., T.A.D. Maxwell, K. Warr, J.R. Ellis, and S.I. Rogers. 2008. Spatial variability of infaunal nematode and polychaete assemblages in two muddy subtidal habitats. Marine Biology 153: 621–642.

    Article  Google Scholar 

  • Shannon, C.E., and W. Weaver. 1963. The mathematical theory of communication. Illinois: The University of Illinois Press.

    Google Scholar 

  • Smol, N., K.A. Willems, G. Jcr, and A.J.J. Sandee. 1994. Composition, distribution, biomass of meiobenthos in the Oosterschelde estuary (SW Netherlands). Hydrobiologia 282: 197–217.

    Article  Google Scholar 

  • Soetaert, K., M. Vincx, J. Wittoeck, and M. Tulkens. 1995. Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia 311: 185–206.

    Article  Google Scholar 

  • Somerfield, P., J. Gee, and R. Warwick. 1994. Soft sediment meiofaunal community structure in relation to a long-term heavy metal gradient in the Fal estuary system. Marine Ecology Progress Series 105: 79–88.

    Article  CAS  Google Scholar 

  • Steyaert, M., L. Moodley, T. Nadong, T. Moens, K. Soetaert, and M. Vincx. 2007. Responses of intertidal nematodes to short-term anoxic events. Journal of Experimental Marine Biology and Ecology 345: 175–184.

    Article  CAS  Google Scholar 

  • Steyaert, M., J. Vanaverbeke, A. Vanreusel, C. Barranguet, C. Lucas, and M. Vincx. 2003. The importance of fine-scale, vertical profiles in characterising nematode community structure. Estuarine, Coastal and Shelf Science 58: 353–366.

    Article  Google Scholar 

  • Vafeiadou, A.M., P. Materatski, H. Adão, M. De Troch, and T. Moens. 2014. Resource utilization and trophic position of nematodes harpacticoid copepods in and adjacent to Zostera noltii beds. Biogeosciences 11: 4001-4014.

    Article  Google Scholar 

  • Valle, M., G. Chust, A. del Campo, M. Wisz, S. Olsen, J. Garmendia, and A. Borja. 2014. Projecting future distribution of the seagrass Zostera noltii under global warming and sea level rise. Biological Conservation 170: 74–85.

    Article  Google Scholar 

  • Vanaverbeke, J., T.N. Bezerra, U. Braeckman, A. De Groote, N. De Meester, T. Deprez, S. Derycke, K. Guilini, F. Hauquier, L. Lins, T. Maria, T. Moens, E. Pape, N. Smol, M. Taheri, J. Van Campenhout, A. Vanreusel, X. Wu, and M. Vincx. 2014. NeMys: world database of free-living marine nematodes. Accessed at http://nemys.ugent.be

  • Verdonschot, P.F.M., B.M. Spears, C.K. Feld, S. Brucet, H. Keizer-Vlek, A. Borja, M. Elliott, M. Kernan, and R.K. Johnson. 2012. A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters. Hydrobiologia 704: 453–474.

    Article  Google Scholar 

  • Vincx, M. 1996. Meiofauna in marine and freshwater sediments. In Methods for the examination of organismal diversity in soils and sediments, ed. G.S. Hall, 187–195. Wallingford: Cabi Publishing.

    Google Scholar 

  • Warwick, R.M. 1971. Nematode associations in the Exe estuary. Journal of the Marine Biological Association of the United Kingdom 51: 439–454.

    Article  Google Scholar 

  • Warwick, R.M., H.M. Platt, and P.J. Somerfield. 1998. Free-living nematodes (Part III) Monhysterids. In Synopsis of British Fauna, ed. B.a. Crothers.

  • Webster, P.J., A.A. Rowden, and M.J. Attrill. 1998. Effect of shoot density on the infaunal macroinvertebrate community within a Zostera marina seagrass bed. Estuarine, Coastal and Shelf Science 47: 351–357.

    Article  Google Scholar 

  • Wieser, W. 1953. Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marine Nematoden. Arkiv für Zoologie 2: 439–484.

    Google Scholar 

Download references

Acknowledgments

P. Materatski is grateful to the Portuguese Foundation for Science and Technology (FCT) for a doctoral grant (ref. SFRH/BD/65915/2009), funded by Programa Operacional Potencial Humano of QREN Portugal (2007–2013) and by the Portuguese budget through the Ministry of Education and Science. Anna-Maria Vafeiadou acknowledges a joint PhD grant from the research council of Ghent University (BOF). The present study was also carried out using funds provided by the research projects CoolNematode (FCT; EXPL/MAR-EST/0553/2013) and ProMira (PROMAR; 31-03-02-FEP-006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Materatski.

Additional information

Communicated by Masahiro Nakaoka

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

Mean density ± standard error (SE) of nematode genera (individuals 10 cm−2) on each sampling occasion (February 2010, June 2010, September 2010, December 2010 and February 2011), site (A and B) and station (1, 2, and 3). Trophic groups (TGs) of each genus. Only the most abundant genera are included in this table (PDF 394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Materatski, P., Vafeiadou, AM., Moens, T. et al. Structural and Functional Composition of Benthic Nematode Assemblages During a Natural Recovery Process of Zostera noltii Seagrass Beds. Estuaries and Coasts 39, 1478–1490 (2016). https://doi.org/10.1007/s12237-016-0086-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-016-0086-0

Keywords

Navigation