Skip to main content

Advertisement

Log in

Tidal Channel Diatom Assemblages Reflect within Wetland Environmental Conditions and Land Use at Multiple Scales

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We characterized regional patterns of the tidal channel benthic diatom community and examined the relative importance of local wetland and surrounding landscape level factors measured at multiple scales in structuring this assemblage. Surrounding land cover was characterized at the 100, 250, 1,000 m, and watershed buffer scales. Tidal channel benthic diatom communities were characterized by high species richness, abundance of rare species, and an abundance of species characterized as meso-eutraphentic and eutraphentic. The number of species per site ranged between 21 and 60 (mean ± standard deviation 43.5 ± 9.4). Abundant and frequently occurring taxa included Planothidium delicatulum, Navicula gregaria, and Amphora coffeaeformis. The tidal channel benthic diatom community was most strongly correlated with variables related to human disturbance at all scales surrounding the wetland and not with any tidal channel water quality parameter, including salinity. Furthermore, developed and impervious surface land covers within the 100 and 250 m buffers were more strongly correlated with the diatom assemblage than these covers at larger spatial scales. Species richness and Shannon diversity index were both negatively correlated with the amount of wetland and mudflat surrounding the sites. Of secondary importance in structuring the diatom assemblage were sediment nitrogen and phosphorus concentrations in wetlands immediately surrounding the tidal channels. The sensitivity of the tidal creek benthic diatom assemblage to both wetland and landscape level factors indicates that it might be a useful bioindicator of human disturbance to tidal wetland ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamus, P.R., J. Larsen, and R. Scranton. 2005. Wetland profiles of Oregon’s coastal watersheds and estuaries. Part 3 of a Hydrogeomorphic Guidebook, Report to Coos Watershed Association. Salem, OR: US EPA and Oregon Department of State Lands.

  • Agatz, M., R.M. Asmus, and B. Deventer. 1999. Structural changes in the benthic diatom community along a eutrophication gradient on a tidal flat. Helgoland Marine Research 53: 92–101.

    Article  Google Scholar 

  • Armitage, A.R., and P. Fong. 2004. Upward cascading effects of nutrients: shifts in a benthic algal community and a negative herbivore response. Oecologia 139: 560–567.

    Article  Google Scholar 

  • Arnold, C.L., and C.J. Gibbons. 1996. Impervious surface coverage. Journal of the American Planning Association 62: 243–258.

    Article  Google Scholar 

  • Arnold, C.L., P.J. Boison, and P.C. Patton. 1982. Sawmill Brook: an example of rapid geomorphic change related to urbanization. Journal of Geology 90: 155–166.

    Article  Google Scholar 

  • Bahls, L. L. 1993. Periphyton bioassessment methods for Montana streams. Helena: Water Quality Bureau, Department of Health and Environmental Sciences.

  • Bertness, M.D., and A.M. Ellison. 1987. Determinants of pattern in a New England salt marsh plant community. Ecological Monographs 57: 129–147.

    Article  Google Scholar 

  • Bertness, M.D., P.J. Ewanchuk, and B.R. Silliman. 2002. Anthropogenic modification of New England salt marsh landscapes. Proceedings of the National Academy of Sciences 99: 1395–1398.

    Article  CAS  Google Scholar 

  • Biggs, B.J.F. 1990. Periphyton communities and their environments in New Zealand rivers. New Zealand Journal of Marine and Freshwater Research 24: 367–386.

    Article  Google Scholar 

  • Bilkovic, D.M., M. Roggero, C.H. Hershner, and K.H. Haves. 2006. Influence of land use on macrobenthic communities in nearshore estuarine habitats. Estuaries and Coasts 29: 1185–1195.

    Article  Google Scholar 

  • Carey, J.C., and R.W. Fulweiler. 2011. Human activities directly alter watershed dissolved silica fluxes. Biogeochemistry. doi:10.1007/s10533-011-9671-2.

    Google Scholar 

  • Carey, J.C., and R.W. Fulweiler. 2013. Nitrogen enrichment increases net silica accumulation in a temperate salt marsh. Limnology and Oceanography 58: 99–111.

    Article  CAS  Google Scholar 

  • Cooper, S.R. 1999. Estuarine paleoenvironmental reconstructions using diatoms. In The Diatoms: Applications for the Environmental and Earth Sciences, ed. E.F. Stoermer and J.P. Smol, 352–373. Cambridge: Cambridge University Press.

    Google Scholar 

  • deJonge, V.N., and J.E.E. van Beuseko. 1992. Contribution of resuspended microphytobenthos to total phytoplankton in the Ems estuary and its possible role for grazers. Netherlands Journal of Sea Research 30: 91–105.

    Article  Google Scholar 

  • DeLuca, W.V., C.E. Studds, L.L. Rockwood, and P.P. Marra. 2004. Influence of land use on the integrity of marsh bird communities of the Chesapeake Bay, USA. Wetlands 24: 837–837.

    Article  Google Scholar 

  • Denys, L., and H. De Wolf. 1999. Diatoms as indicators of coastal paleoenvironments and relaive sea-level change. In The Diatoms: Applications for the Environmental and Earth Sciences, ed. E.F. Stoermer and J.P. Smol, 277–297. Cambridge: Cambridge University Press.

    Google Scholar 

  • Dixit, S.S., J.P. Smol, D.F. Charles, R.M. Hughes, S.G. Paulsen, and G.B. Collins. 1999. Assessing water quality changes in the lakes of northeastern United States using sediment diatoms. Canadian Journal of Fisheries and Aquatic Sciences 56: 131–152.

    Article  Google Scholar 

  • Frenkel, R.E., H.P. Eilers, and C.A. Jefferson. 1981. Oregon coastal salt marsh upper limits and tidal datums. Estuaries 4: 195–205.

    Article  Google Scholar 

  • Goldsborough, L.G., and G.G.C. Robinson. 1996. Pattern in wetlands. In Algal Ecology, ed. R.J. Stevenson, M.L. Bothwell, and R.L. Lowe, 77–117. San Diego: Academic Press.

    Chapter  Google Scholar 

  • Gray, A., C.A. Simenstad, D.L. Bottom, and T.J. Cornwell. 2002. Contrasting functional performance of juvenile salmon habitat in recovering wetlands of the Salmon River Estuary, Oregon, U.S.A. Restoration Ecology 10: 514–526.

    Article  Google Scholar 

  • Hall, R.I., and J.P. Smol. 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwater Biology 37: 417–434.

    Article  Google Scholar 

  • Hankin, S.L., C.L. Weilhoefer, J.E. Kaldy, and T.D. DeWitt. 2012. Sediment diatom species and community response to nitrogen addition in Oregon (USA) estuarine tidal wetlands. Wetlands. doi:10.1007/s13157-012-0332-6.

    Google Scholar 

  • Hanski, I. 1982. Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38: 210–221.

    Article  Google Scholar 

  • Hickey, B.M., and N.S. Banas. 2003. Oceanography of the U.S. Pacific Northwest coastal ocean and estuaries with application to coastal ecology. Estuaries 26: 1010–1031.

    Article  Google Scholar 

  • Holland, F.A., D.M. Sanger, C.P. Gawl, S.B. Lerberg, M.S. Santiago, G.M.H. Riekerk, L.E. Zimmerman, and G.I. Scott. 2004. Linkages between tidal creek ecosystems and the landscape and demographic attributes of their watersheds. Journal of Experimental Marine Biology and Ecology 298: 151–178.

    Article  Google Scholar 

  • Howes, B.L., R.W. Howard, J.M. Teal, and I. Valiela. 1981. Oxidation-reduction potentials in salt marshes: spatial patterns and interactions with primary production. Limnology and Oceanography 26: 350–360.

    Article  Google Scholar 

  • Kim, J.G., and E. Rejmankova. 2001. The paleoecological record of human disturbance in wetlands of the Lake Tahoe Basin. Journal of Paleolimnology 25: 437–454.

    Article  Google Scholar 

  • Kramer, K., and H. Lange-Bertalot. 1986. Susswasserflora von Mitteleuropa: Bacillariophyceae, Part 1. Spektrum Akademischer Verlag: Naviculaceae. Heidelberg.

    Google Scholar 

  • Kramer, K., and H. Lange-Bertalot. 1988. Susswasserflora von Mitteleuropa: Bacillariophyceae, Part 2. Epithemiaceae, Bacillariophyceae, Surirellaceae. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Kramer, K., and H. Lange-Bertalot. 1991a. Susswasserflora von Mitteleuropa: Bacillariophyceae, Part 3. Centrales, Fragilariaceae, Eunotiaceae, Achnanthaceae. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Kramer, K., and H. Lange-Bertalot. 1991b. Susswasserflora von Mitteleuropa: Bacillariophyceae, Part 4. Achnanthaceae: Spektrum Akademischer Verlag.

    Google Scholar 

  • Kramer, K., and H. Lange-Bertalot. 2000. Susswasserflora von Mitteleuropa: Bacillariophyceae, Part 5. English and French Translation of Keys. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Kwak, J., and J.B. Zedler. 1997. Foodweb analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia 110: 262–277.

    Article  Google Scholar 

  • Lange-Bertalot, H. 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 6: 285–303.

    Google Scholar 

  • Lee II, H., and C.A. Brown. 2009. Classification of regional patterns of environmental drivers and benthic habitats in Pacific Northwest Estuaries. Newport, OR: US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Western Ecology Division

  • Lerberg, S.B., A.F. Holland, and D.M. Sanger. 2000. Responses of tidal creek macrobenthic communities to the effects of watershed development. Estuaries 23: 838–853.

    Article  CAS  Google Scholar 

  • McIntire, C.D., and W.W. Moore. 1977. Marine littoral diatoms: ecological considerations. In The Biology of Diatoms. Botanical Monographs Vol 13, ed. D. Werner, 333–371. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Mitsch, W.J., and J.G. Gosselink. 2007. Wetlands. Hoboken: John Wiley and Sons.

    Google Scholar 

  • Molloy, J.M. 1992. Diatom communities along stream longitudinal gradients. Freshwater Biology 28: 59–69.

    Article  Google Scholar 

  • Nelson, A.R., and K. Kashima. 1993. Diatom zonation in southern Oregon tidal marshes relative to vascular plants, foraminifera, and sea level. Journal of Coastal Research 9: 673–697.

    Google Scholar 

  • NOAA. 1998. NOAA’s Estuarine Eutrophication Survey, Volume 5: Pacific Coast Region. Silver Spring: Office of Ocean Resources Conservation and Assessment.

    Google Scholar 

  • Olsen, R., N.H. Cutshall, and I.L. Larsen. 1982. Pollutant particle associations and dynamics in coastal marine environments: a review. Marine Chemistry 11: 501–533.

    Article  CAS  Google Scholar 

  • Pan, Y., and R.J. Stevenson. 1996. Gradient analysis of diatom assemblages in western Kentucky wetlands. Journal of Phycology 32: 222–232.

    Article  Google Scholar 

  • Pan, Y., R.J. Stevenson, B.H. Hill, A.T. Herlihy, and G.B. Collins. 2006. Using diatoms as indicators of ecological conditions in lotic systems: a regional assessment. Journal of the North American Benthological Society 15: 481–495.

    Article  Google Scholar 

  • Peletier, H., W.W.C. Gieskes, and A.G.J. Buma. 1996. Ultraviolet-B radiation resistance of benthic diatoms isolated from tidal flats in the Dutch Wadden Sea. Marine Ecology Progress Series 135: 163–168.

    Article  Google Scholar 

  • Pennings, S.C., M. Bestor-Grant, and M.D. Bertness. 2005. Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. Journal of Ecology 93: 159–167.

    Article  Google Scholar 

  • Potapova, M., and D. Charles. 2003. Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology 48: 1311–1328.

    Article  CAS  Google Scholar 

  • Riznyk, R.Z. 1973. Interstital diatoms from two tidal flats in Yaquina Estuary, Oregon, USA. Botanica Marina 16: 113–138.

    Article  Google Scholar 

  • Sanger, D.M., A.F. Holland, and G.I. Scott. 1999a. Tidal creek and salt marsh sediments in South Carolina coastal estuaries: I. distribution of trace metals. Archives of Environmental Contamination and Toxicology 37: 445–457.

    Article  CAS  Google Scholar 

  • Sanger, D.M., A.F. Holland, and G.I. Scott. 1999b. Tidal creek and salt marsh sediments in South Carolina coastal estuaries: II Distribution of organic contaminants. Archives of Environmental Contamination and Toxicology 37: 458–471.

    Article  CAS  Google Scholar 

  • Scranton, R. 2004.The application of Geographic Information Systems for delineation and classification of tidal wetlands for resources management of Oregon’s coastal watersheds.Corvallis: Oregon State University Master’s Thesis.

  • Simonsen, R. 1962. Untersuchungenzur systematic und ökologie der bodendiatomeen der westlichenOstsee.International Revue der gesamten Hydrobiologie. SystematischeBeihefte 1: 1–144.

    Google Scholar 

  • Snoeijis, P. 1994. Distribution of epiphytic diatom species composition, diversity, and biomass on different macroalgal hosts along seasonal and salinity gradients in the Baltic Sea. Diatom Research 9: 189–211.

    Article  Google Scholar 

  • Söderström, L. 1989. Regional distribution patterns of bryophyte species on spruce logs in Northern Sweden. Bryologist 92: 349–355.

    Article  Google Scholar 

  • Sorvari, S., A. Korhola, and R. Thompson. 2002. Lake diatom response to recent Arctic warming in Finnish Lapland. Global Change Biology 8: 171–181.

    Article  Google Scholar 

  • Sullivan, M.J. 1975. Diatom communities from a Delaware salt marsh. Journal of Phycology 11: 384–390.

    Google Scholar 

  • Sullivan, M.J. 1976. Long-term effects of manipulating light intensity and nutrient enrichment on the structure of a salt marsh diatom community. Journal of Phycology 12: 205–210.

    Google Scholar 

  • Sullivan, M.J. 1981. Effects of canopy removal and nitrogen enrichment on a Distichlisspicata-edaphic diatom complex. Estuarine, Coastal and Shelf Science 13: 119–129.

    Article  Google Scholar 

  • Sullivan, M.J., and C.A. Moncreiff. 1988. Primary production of edaphic algal communities in a Mississippi salt marsh. Journal of Phycology 24: 49–58.

    Article  Google Scholar 

  • Sundbäck, K., and W. Granéli. 1988. Influence of microphytobenthos on the nutrient flux between sediment and water: a laboratory study. Marine Ecology Progress Series 43: 63–69.

    Article  Google Scholar 

  • Sundbäck, K., and P. Snoeijis. 1991. Effects of nutrient enrichment on microalgal community composition in a shallow-water sediment system: An experimental study. Botanica Marina 34: 341–458.

    Article  Google Scholar 

  • Sundbäck, K., V. Enoksson, W. Granéli, and K. Pettersson. 1991. Influence of sublittoralmicrophytobenthos on the oxygen and nutrient flux between sediment and water: a laboratory continuous-flow study. Marine Ecology Progress Series 74: 263–279.

    Article  Google Scholar 

  • Underwood, G.J.C., J. Phillips, and K. Saunders. 1998. Distribution of estuarine benthic diatom species along salinity and nutrient gradients. European Journal of Phycology 33: 173–183.

    Article  Google Scholar 

  • Valiela, I., and J.M. Teal. 1974. Nutrient limitation of salt marsh vegetation. In Ecology of Halophytes, ed. R.J. Reimold and W.H. Queen, 547–563. New York: Academic Press.

    Chapter  Google Scholar 

  • Van Dam, H., A. Mertens, and J. Sinkeldam. 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–133.

    Article  Google Scholar 

  • Van Raalte, C.D., I. Valiela, and J.M. Teal. 1976. The effect of fertilization on the species composition of salt marsh diatoms. Water Research 10: 1–4.

    Article  Google Scholar 

  • Walker, C.E., and Y. Pan. 2006. Using diatoms to assess urban stream condition. Hydrobiologia 561: 179–189.

    Article  CAS  Google Scholar 

  • Wang, L., J. Lyons, P. Kanehl, and R. Bannerman. 2001. Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environmental Management 28: 255–266.

    Article  CAS  Google Scholar 

  • Weilhoefer, C.L., and Y. Pan. 2007. Relationships between diatoms and environmental variables in wetlands in the Willamette Valley, OR, USA. Wetlands 27: 668–682.

    Article  Google Scholar 

  • Weilhoefer, C.L., W.G. Nelson, P. Clinton, and D.M. Beugli. 2013. Environmental determinants of emergent macrophyte vegetation in Pacific Northwest estuarine tidal wetlands. Estuaries 36: 377–389.

    Article  CAS  Google Scholar 

  • Wendker, S. 1990. Untersuchungenzursubfossilen und rezentenDiatomeenflora des Schlei-Ästuars (Ostsee). Biblotheca Diatomologica 20: 1–268.

    Google Scholar 

  • Whiting, M.C., and C.D. McIntire. 1985. An investigation of distributional patterns in the diatom flora of Netarts Bay, Oregon, by correspondence analysis. Journal of Phycology 21: 65–661.

    Google Scholar 

  • Wigand, C., R.A. McKinney, M.A. Charpentier, M.M. Chintala, and G.B. Thursby. 2003. Relationships of nitrogen loadings, residential development, and physical characteristics with plant structure in New England salt marshes. Estuaries 26: 1494–1504.

    Article  CAS  Google Scholar 

  • Zedler, J.B. 1980. Algal mat productivity: comparison in a salt marsh. Estuaries 3: 122–131.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine L. Weilhoefer.

Additional information

Communicated by Carolyn A. Currin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weilhoefer, C.L., Nelson, W.G. & Clinton, P. Tidal Channel Diatom Assemblages Reflect within Wetland Environmental Conditions and Land Use at Multiple Scales. Estuaries and Coasts 38, 534–545 (2015). https://doi.org/10.1007/s12237-014-9826-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9826-1

Keywords

Navigation