Skip to main content

Advertisement

Log in

A Minor Role for Environmental Adaptation in Local–Scale Maize Landrace Distribution: Results from a Common Garden Experiment in Oaxaca, Mexico1

  • Published:
Economic Botany Aims and scope Submit manuscript

A Minor Role for Environmental Adaptation in Local–Scale Maize Landrace Distribution: Results from a Common Garden Experiment in Oaxaca, Mexico. Agronomists usually assume that yield is a primary selection trait for farmers practicing traditional agriculture. They hypothesize that the landraces grown in farmers’ fields produce higher yields than other local landraces would, if grown in the same fields. We test this hypothesis in experimental gardens using maize landraces grown by indigenous farmers in a low– to mid–elevation region in Oaxaca, Mexico. We selected four villages, two Chatino and two Mixtec, two in low and two in middle elevations. We planted reciprocal common gardens in each village, in order to test whether or not local maize landraces were higher yielding in their respective villages—a finding that would suggest they are selected because they are better adapted to local conditions than landraces from other villages. We also tested resistance to a fungal disease (ear rot caused by Fusarium) that is cited by farmers in the region as a major problem for maize production. We found that maize samples planted in their villages of origin did not in general have higher yields than samples from other villages. There are significant interactions among common garden site, fertilizer use, and seed source. We found that landraces from the Chatino lowlands village perform well in most sites, with and without fertilizer. Regarding ear rot, there is some evidence that landraces are less susceptible when grown away from their villages of origin. These results suggest that social factors, such as seed networks and ethno–linguistic membership, may be more important than local environmental adaptation in determining the distribution of landraces in this region.

La adaptación ambiental juega un rol menor en la distribución de maíces a escala local: resultados de un experimento de jardines recíprocos en Oaxaca, México. En la práctica agrícola generalmente se asume que el rendimiento es una de las razones por las cuales los agricultores tradicionales seleccionan una variedad local. Esto conlleva a la hipótesis de que los cultivares que utilizan los agricultores son los que tienen los rendimientos más altos en comparación con otros cultivares de la región. Nosotros probamos esta hipótesis estudiando las variedades utilizadas por agricultores indígenas en una región con un rango altitudinal de 400 a 1300 msnm en Oaxaca, México. Seleccionamos cuatro localidades, dos chatinas y dos mixtecas, dos a baja altitud y dos a altitud media. Establecimos jardines recíprocos en cada una para probar si los maíces de cada localidad producían más que los de otras localidades. Esto podría sugerir que esos cultivares fueron seleccionados porque están mejor adaptados a las condiciones locales. También probamos resistencia a enfermedades por hongos (pudrición causada por Fusarium spp) porque esta enfermedad fue mencionada por los agricultores como una de las principales en el cultivo de maíz. Los resultados mostraron que las muestras plantadas en la localidad donde fueron colectadas no siempre tienen los mayores rendimientos en comparación con muestras de otras localidades. Encontramos interacciones significativas entre el sitio de la parcela, fertilización y la localidad de origen de la muestra. Las muestras de la localidad chatina localizada a baja elevación tuvieron mejor rendimiento en la mayoría de los sitios, con y sin fertilizante. En relación a pudrición de la mazorca, hay un poco de evidencia de que los cultivares son menos susceptibles cuando se siembran lejos de su localidad de origen. Estos resultados sugieren que factores sociales, tales como redes de semillas y pertenencia a un grupo étnico, podrían ser más importantes que la adaptación local en la determinación de la distribución de variedades locales en esta región.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Literature Cited

  • Aguirre, J., M. Bellon, and M. Smale. 2000. A regional analysis of maize biological diversity in Southeastern Guanajuato, Mexico. Economic Botany 54:60–72.

    Article  Google Scholar 

  • Aquino, P., F. Carrión, R. Calvo, and D. Flores. 2001. Selected maize statistics. Pages 45–59 in P. L. Pingali, ed., Meeting world maize needs: Technological opportunities and priorities for the public sector. International Maize and Wheat Improvement Center, Mexico City, Mexico.

    Google Scholar 

  • Arias, L., L. Latournerie, S. Montiel, and E. Sauri. 2007. Cambios recientes en la diversidad de maíces criollos de Yucatán, México. Universidad y Ciencia 1:69–74.

    Google Scholar 

  • Bates, D., M. Maechler, B. Bolker, and S. Walker. 2013. lme4: Linear mixed–effects models using Eigen and S4. R package version 1.0–4. http://CRAN.R-project.org/package=lme4.

  • Bellon, M. R. 1996. The dynamics of crop infraspecific diversity: A conceptual framework at the farmer level. Economic Botany 50:26–39.

    Article  Google Scholar 

  • ——— and S. Brush. 1994. Keepers of maize in Chiapas, Mexico. Economic Botany 48:196–209.

  • ——— and J. E. Taylor. 1993. “Folk” soil taxonomy and the partial adoption of new seed varieties. Economic Development and Cultural Change 41:763–786.

  • ———, M. Smale, A. Aguirre, F. Aragón, S. Taba, J. Berthaud, J. Díaz, and H. Castro. 1999. Farmer management of maize diversity in the central valleys of Oaxaca, Mexico: Methods proposed for impact assessment. In: Assessing the impact of participatory research and gender analysis, eds., N. Lilja, J. A. Ashby, and L. Sperling, 189–201. Cali, Colombia: CGIAR Programme on Participatory Research and Gender Analysis.

  • Benz, B., H. Perales, and S. Brush. 2007. Tzeltal and Tzotzil farmer knowledge and maize diversity in Chiapas, Mexico. Current Anthropology 48:289–300.

    Article  Google Scholar 

  • Brush, S. and E. Meng. 1998. Farmers’ valuation and conservation of crop genetic resources. Genetic Resources and Crop Evolution 45:139–150.

    Article  Google Scholar 

  • Burnham, K. P. and D. R. Anderson. 2002. Model selection and multi–model inference: A practical information–theoretic approach. Springer, New York.

    Google Scholar 

  • Carballo, C. A. and A. Benítez. 2003. Manual gráfico para la descripción varietal del maíz (Zea mays L.). SAGARPA. SNICS. Colegio de Postgraduados en Ciencias Agrícolas, México.

    Google Scholar 

  • CIMMYT. 2004. Enfermedades del maíz: una guía para su identificación en el campo. Programa de maíz del CIMMYT, Mexico City, Mexico.

    Google Scholar 

  • Cleveland, D. A., D. Soleri, and S. E. Smith. 1994. Do folk crop varieties have a role in sustainable agriculture? BioScience 44:740–751.

    Article  Google Scholar 

  • CONABIO. 2011. Bases de datos de maíz. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. http://www.biodiversidad.gob.mx/genes/genes.html#NULL (20 March 2013).

  • Dyer, G. A. and J. E. Taylor. 2008. A crop population perspective on maize seed systems in Mexico. Proceedings of the National Academy of Sciences of the United States of America 105:470–475.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Enjalbert, J., J. C. Dawson, S. Paillard, B. Rhoné, Y. Rousselle, M. Thomas, and I. Goldringer. 2011. Dynamic management of crop diversity: From an experimental approach to on–farm conservation. Comptes rendus biologies 334:458–468.

    Article  PubMed  Google Scholar 

  • Evans, L. T. 1993. Crop evolution, adaptation and yield. Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • Gepts, P. 2004. Crop domestication as a long–term selection experiment. Plant Breeding Reviews 24:1–44.

    Google Scholar 

  • Henrich, J. 2001. Cultural transmission and the diffusion of innovations: Adoption dynamics indicate that biased cultural transmission is the predominate force in behavioral change. American Anthropologist 103:992–1013.

    Article  Google Scholar 

  • Hernández, E. and F. Alanis. 1970. Estudio morfológico de cinco nuevas razas de maíz de la Sierra Madre Occidental de México: Implicaciones filogenéticos y fitogeográficas. Agrociencia 5:3–30.

    Google Scholar 

  • Hernández, X. 1972. Exploración etnobotánica en maíz. Fitotecnia latinoamericana 8:46–51.

    Google Scholar 

  • Hernández–Ramos, A. R. 2011. Planes Regionales de Desarrollo de Oaxaca 2011–2016. Gobierno del estado de Oaxaca, Región Sierra Sur. Oaxaca, Mexico.

    Google Scholar 

  • Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965–1978.

    Article  Google Scholar 

  • INEGI. 2005. Conjunto de datos vectoriales uso de suelo y vegetacion. Escala 1:250000. Serie III. INEGI, Mexico.

    Google Scholar 

  • ——— 2013. Conjunto de datos vectoriales de la serie topográfica y de recursos naturales escala 1:1 000 000. Mexico: INEGI. http://www.inegi.org.mx/geo/contenidos/recnat/clima/infoescala.aspx (25 April 2013).

  • Kato, T., C. Mapes, L. Mera, J. Serratos, and R. Bye. 2009. Origen y diversificación del maíz: una revisión analítica. Universidad Nacional Autónoma de México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México City, México.

    Google Scholar 

  • Leclerc, C. and G. C. d’Eeckenbrugge. 2011. Social organization of crop genetic diversity. The G × E × S interaction model. Diversity 4:1–32.

    Article  Google Scholar 

  • Louette, D. and M. Smale. 2000. Farmers’ seed selection practices and traditional maize varieties in Cuzalapa, Mexico. Euphytica 113:25–41.

    Article  Google Scholar 

  • Mercer, K., Á. Martínez Vásquez, and H. Perales. 2008. Asymmetrical local adaptation of maize landraces along an altitudinal gradient. Evolutionary Applications 1:489–500.

    Article  PubMed Central  Google Scholar 

  • Perales, H., B. Benz, and S. Brush. 2005. Maize diversity and ethnolinguistic diversity in Chiapas, Mexico. Proceedings of the National Academy of Sciences of the United States of America 102:949–954.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • ———, S. B. Brush, and C. O. Qualset. 2003. Landraces of maize in Central Mexico: An altitudinal transect. Economic Botany 57:7–20.

  • Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R. D. C. Team. 2013. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–108. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • R Core Team. 2012. R: A language and environment for statistical computing. ISBN 3–900051–07–0. R Foundation for Statistical Computing. Vienna, Austria, 2013. http://www.R-project.org (1 February 2013).

  • SIAP. 2014. Anuario estadístico de la producción agrícola. http://www.siap.gob.mx/cierre–de–la–produccion–agricola–por–cultivo/ (10 August 2014).

  • Troyer, A. 2000. Temperate corn–background, behavior, and breeding. in A. Hallauer, ed., Specialty corns, second edition. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • van Etten, J. and S. de Bruin. 2007. Regional and local maize seed exchange and replacement in the western highlands of Guatemala. Plant Genetic Resources: Characterization and Utilization 5:57–70.

    Article  Google Scholar 

  • Vigouroux, Y., A. Barnaud, N. Scarcelli, and A.-C. Thuillet. 2011. Biodiversity, evolution and adaptation of cultivated crops. Comptes Rendus Biologies 334:450–457.

    Article  PubMed  Google Scholar 

  • Wellhausen, E., L. M. Roberts, and E. Hernandez X. 1952. Races of maize in Mexico, their origin, characteristics, and distribution. The Bussey Institution, Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  • White, D. G. 1999. Compendium of corn diseases. St. APS Press, Paul, Minnesota.

    Google Scholar 

  • Wood, D. and J. M. Lenné. 1997. The conservation of agrobiodiversity on–farm: Questioning the emerging paradigm. Biodiversity and Conservation 6:109–129.

    Article  Google Scholar 

  • Zimmerer, K. 1996. Changing fortunes: Biodiversity and peasant livelihood in the Peruvian Andes. University of California Press, Berkeley, California.

    Google Scholar 

Download references

Acknowledgements

We thank farmers and municipal authorities in Santiago Amoltepec and Santa Cruz Zenzontepec, Oaxaca. Financial support was provided by CONACyT and UC MEXUS (doctoral scholarship 2009) and a UC MEXUS dissertation grant (2011) to the first author. We also thank two anonymous reviewers for their suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quetzalcóatl Orozco–Ramírez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix

(DOCX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orozco–Ramírez, Q., Brush, S.B., Grote, M.N. et al. A Minor Role for Environmental Adaptation in Local–Scale Maize Landrace Distribution: Results from a Common Garden Experiment in Oaxaca, Mexico1 . Econ Bot 68, 383–396 (2014). https://doi.org/10.1007/s12231-014-9285-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12231-014-9285-4

Key Words

Navigation