Skip to main content
Log in

Genetic Mapping of Steroidal Glycoalkaloids Using Selective Genotyping in Potato

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Steroidal glycoalkaloids (SGAs) are important secondary metabolites in potato which are associated with constitutive host defense mechanism. SGAs like leptines and dehydrocommersonine (DHC) present in wild S. chacoense and S. oplocense, respectively, are known to deter Colorado potato beetle (CPB) feeding. In the current study, LC-MS analysis led to tentative identification of a new SGA with the same molecular mass as α-solanine, solanidenol-chacotriose (SC), which was present in high levels in the CPB susceptible S. tuberosum cv. Shepody, but not in S. oplocense. In a progeny derived from a cross between S. tuberosum, cv. Shepody and S. oplocense derived F1 hybrid, 13213–07, SC was one of the highly variable metabolites along with DHC. Selective genotyping was used for genetic mapping of QTL controlling SC and DHC to chromosome 1. Selective genotyping is dependent on variation between extremes in populations, and it was not effective for QTL mapping of α-solanine and α-chaconine where differences between extremes was low.

Resumen

Los glicoalcaloides esteroidales (SGAs) son metabolitos secundarios importantes en papa, que están asociados con un mecanismo de defensa constitutivo del hospedante. SGAs, como las leptinas y dehidrocomersonina (DHC) presentes en las especies silvestres S. chacoense y S. oplocense, respectivamente, se sabe que desalientan al escarabajo de colorado (CPB) para su alimentación. En el presente estudio, el análisis de LC-MS condujo a la identificación tentativa de un nuevo SGA con la misma masa molecular como α-solanina, solanidenol-chacotriosa (SC), que estaba presente en altos niveles en S. tuberosum cv. Shepody, susceptible al CPB, pero no en S. oplocense. En una progenie derivada de la cruza entre S. tuberosum, cv. Shepody y S. oplocense se derivó un híbrido F1, 13213–07, SC fue uno de los metabolitos altamente variables junto con DHC. Se usó genotipación selectiva para el mapa genético de QTL que controla SC y DHC en el cromosoma 1. La genotipación selectiva depende de la variación entre extremos en poblaciones, y no fue efectiva para el mapeo por QTL de α-solanina y α-chaconina donde la diferencia entre los extremos fue baja.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bolger, A.M., M. Lohse, and B. Usadel. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cárdenas, P.D., P.D. Sonawane, U. Heinig, S.E. Bocobza, S. Burdman, and A. Aharoni. 2015. The bitter side of the nightshades: Genomics drives discovery in Solanaceae steroidal alkaloid metabolism. Phytochemistry 113: 24–32.

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas, P.D., P.D. Sonawane, J. Pollier, R. Vanden Bossche, V. Dewangan, E. Weithorn, L. Tal, S. Meir, I. Rogachev, S. Malitsky, A.P. Giri, A. Goossens, S. Burdman, and A. Aharoni. 2016. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nature Communications 7.

  • Choe, S., A. Tanaka, T. Noguchi, S. Fujioka, S. Takatsuto, A.S. Ross, F.E. Tax, S. Yoshida, and K.A. Feldmann. 2000. Lesions in the sterol delta reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. The Plant Journal 21: 431–443.

    Article  CAS  PubMed  Google Scholar 

  • Churchill, G.A., and R.W. Doerge. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danecek, P., A. Auton, G. Abecasis, C.A. Albers, E. Banks, M.A. DePristo, R.E. Handsaker, G. Lunter, G.T. Marth, and S.T. Sherry. 2011. The variant call format and VCFtools. Bioinformatics 27: 2156–2158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darvasi, A., and M. Soller. 1992. Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theoretical and Applied Genetics 85: 353–359.

    Article  CAS  PubMed  Google Scholar 

  • Distl, M., and M. Wink. 2009. Identification and quantification of steroidal alkaloids from wild tuber-bearing solanum species by HPLC and LC-ESI-MS. Potato Research 52: 79–104.

    Article  CAS  Google Scholar 

  • Elshire, R.J., J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. Buckler, and S.E. Mitchell. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6: e19379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field, B., A.-S. Fiston-Lavier, A. Kemen, K. Geisler, H. Quesneville, and A.E. Osbourn. 2011. Formation of plant metabolic gene clusters within dynamic chromosomal regions. Proceedings of the National Academy of Sciences 108: 16116–16121.

    Article  Google Scholar 

  • Friedman, M., G.M. McDonald, and M. Filadelfi-Keszi. 1997. Potato glycoalkaloids: Chemistry, analysis, safety, and plant physiology. Critical Reviews in Plant Sciences 16: 55–132.

    Article  CAS  Google Scholar 

  • Ginzberg, I., J.G. Tokuhisa, and R.E. Veilleux. 2009. Potato steroidal glycoalkaloids: Biosynthesis and genetic manipulation. Potato Research 52: 1–15.

    Article  CAS  Google Scholar 

  • Ginzberg, I., M. Thippeswamy, E. Fogelman, U. Demirel, A.M. Mweetwa, J. Tokuhisa, and R.E. Veilleux. 2012. Induction of potato steroidal glycoalkaloid biosynthetic pathway by overexpression of cDNA encoding primary metabolism HMG-CoA reductase and squalene synthase. Planta 235: 1341–1353.

    Article  CAS  PubMed  Google Scholar 

  • Hardigan, M.A., F.P.E. Laimbeer, L. Newton, E. Crisovan, J.P. Hamilton, B. Vaillancourt, K. Wiegert-Rininger, J.C. Wood, D.S. Douches, E.M. Farré, R.E. Veilleux, and C.R. Buell. 2017. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proceedings of the National Academy of Sciences 114: E9999–E10008.

    Article  CAS  Google Scholar 

  • Hutvágner, G., Z. Bánfalvi, I. Milánkovics, D. Silhavy, Z. Polgár, S. Horváth, P. Wolters, and J.P. Nap. 2001. Molecular markers associated with leptinine production are located on chromosome 1 in Solanum chacoense. Theoretical and Applied Genetics 102: 1065–1071.

    Article  Google Scholar 

  • Itkin, M., I. Rogachev, N. Alkan, T. Rosenberg, S. Malitsky, L. Masini, S. Meir, Y. Iijima, K. Aoki, R. de Vos, D. Prusky, S. Burdman, J. Beekwilder, and A. Aharoni. 2011. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell 23: 4507–4525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itkin, M., U. Heinig, O. Tzfadia, A.J. Bhide, B. Shinde, P.D. Cardenas, S.E. Bocobza, T. Unger, S. Malitsky, R. Finkers, Y. Tikunov, A. Bovy, Y. Chikate, P. Singh, I. Rogachev, J. Beekwilder, A.P. Giri, and A. Aharoni. 2013. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341: 175–179.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, J., C. Zhang, and X. Wang. 2013. Ligand perception, activation, and early signaling of plant steroid receptor Brassinosteroid insensitive 1. Journal of Integrative Plant Biology 55: 1198–1211.

    Article  CAS  PubMed  Google Scholar 

  • Kaminski, K.P., K. Kørup, M.N. Andersen, M. Sønderkær, M.S. Andersen, H.G. Kirk, and K.L. Nielsen. 2016. Next generation sequencing bulk segregant analysis of potato support that differential flux into the cholesterol and stigmasterol metabolite pools is important for steroidal glycoalkaloid content. Potato Research 59: 81–97.

    Article  CAS  Google Scholar 

  • King, R.R., and L.A. Calhoun. 2012. Complete 1H and 13C NMR spectral assignments for the glycoalkaloid dehydrocommersonine. Magnetic Resonance in Chemistry 50: 627–631.

    Article  CAS  PubMed  Google Scholar 

  • Kozukue, N., K.-S. Yoon, G.-I. Byun, S. Misoo, C.E. Levin, and M. Friedman. 2008. Distribution of glycoalkaloids in potato tubers of 59 accessions of two wild and five cultivated Solanum species. Journal of Agricultural and Food Chemistry 56: 11920–11928.

    Article  CAS  PubMed  Google Scholar 

  • Krits, P., E. Fogelman, and I. Ginzberg. 2007. Potato steroidal glycoalkaloid levels and the expression of key isoprenoid metabolic genes. Planta 227: 143–150.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., E. Fogelman, M. Weissberg, Z. Tanami, R.E. Veilleux, and I. Ginzberg. 2017. Lanosterol synthase-like is involved with differential accumulation of steroidal glycoalkaloids in potato. Planta 246: 1189–1202.

    Article  CAS  PubMed  Google Scholar 

  • Lelario, F., C. Labella, G. Napolitano, L. Scrano, and S.A. Bufo. 2016. Fragmentation study of major spirosolane-type glycoalkaloids by collision-induced dissociation linear ion trap and infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry 30: 2395–2406.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., 2013: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997.

  • Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, and R. Durbin. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manrique-Carpintero, N.C., J.G. Tokuhisa, I. Ginzberg, and R.E. Veilleux. 2014. Allelic variation in genes contributing to glycoalkaloid biosynthesis in a diploid interspecific population of potato. Theoritical and Applied Genetics 127: 391–405.

    Article  CAS  Google Scholar 

  • Marth, G.T., I. Korf, M.D. Yandell, R.T. Yeh, Z. Gu, H. Zakeri, N.O. Stitziel, L. Hillier, P.-Y. Kwok, and W.R. Gish. 1999. A general approach to single-nucleotide polymorphism discovery. Nature Genetics 23: 452–456.

    Article  CAS  PubMed  Google Scholar 

  • McCue, K.F., P.V. Allen, L.V. Shepherd, A. Blake, J. Whitworth, M.M. Maccree, D.R. Rockhold, D. Stewart, H.V. Davies, and W.R. Belknap. 2006. The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry 67: 1590–1597.

    Article  CAS  PubMed  Google Scholar 

  • McCue, K.F., P.V. Allen, L.V. Shepherd, A. Blake, M.M. Maccree, D.R. Rockhold, R.G. Novy, D. Stewart, H.V. Davies, and W.R. Belknap. 2007. Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis. Phytochemistry 68: 327–334.

    Article  CAS  PubMed  Google Scholar 

  • Medina, T., E. Fogelman, E. Chani, A. Miller, I. Levin, D. Levy, and R. Veilleux. 2002. Identification of molecular markers associated with leptine in reciprocal backcross families of diploid potato. Theoretical and Applied Genetics 105: 1010–1018.

    Article  CAS  PubMed  Google Scholar 

  • Milner, S.E., N.P. Brunton, P.W. Jones, N.M.O. Brien, S.G. Collins, and A.R. Maguire. 2011. Bioactivities of glycoalkaloids and their aglycones from solanum species. Journal of Agricultural and Food Chemistry 59: 3454–3484.

    Article  CAS  PubMed  Google Scholar 

  • Müller, M., and S. Munné-Bosch. 2015. Ethylene response factors: A key regulatory hub in hormone and stress signaling. Plant Physiology 169: 32–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mweetwa, A.M., D. Hunter, R. Poe, K.C. Harich, I. Ginzberg, R.E. Veilleux, and J.G. Tokuhisa. 2012. Steroidal glycoalkaloids in Solanum chacoense. Phytochemistry 75: 32–40.

    Article  CAS  PubMed  Google Scholar 

  • Nützmann, H.-W., A. Huang, and A. Osbourn. 2016. Plant metabolic clusters – From genetics to genomics. The New Phytologist 211: 771–789.

    Article  PubMed  PubMed Central  Google Scholar 

  • O'Brien, M., S.-C. Chantha, A. Rahier, and D.P. Matton. 2005. Lipid signaling in plants. Cloning and expression analysis of the Obtusifoliol 14α-demethylase from Solanum chacoense bitt., a pollination- and fertilization-induced gene with both Obtusifoliol and Lanosterol demethylase activity. Plant Physiology 139: 734–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohyama, K., A. Okawa, Y. Moriuchi, and Y. Fujimoto. 2013. Biosynthesis of steroidal alkaloids in Solanaceae plants: Involvement of an aldehyde intermediate during C-26 amination. Phytochemistry 89: 26–31.

    Article  CAS  PubMed  Google Scholar 

  • Paudel, J.R., C. Davidson, J. Song, I. Maxim, A. Aharoni, and H.H. Tai. 2017. Pathogen and pest responses are altered due to RNAi-mediated knockdown of GLYCOALKALOID METABOLISM 4 in Solanum tuberosum. Molecular Plant-Microbe Interactions 30: 876–885.

    Article  CAS  PubMed  Google Scholar 

  • Pelletier, Y., C. Clark, and G.C. Tai. 2001. Resistance of three wild tuber-bearing potatoes to the Colorado potato beetle. Entomologia Experimentalis et Applicata 100: 31–41.

    Article  Google Scholar 

  • Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M.A. Ferreira, D. Bender, J. Maller, P. Sklar, P.I. De Bakker, and M.J. Daly. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 81: 559–575.

    Article  CAS  PubMed  Google Scholar 

  • Ronning, C.M., J.R. Stommel, S.P. Kowalski, L.L. Sanford, R.S. Kobayashi, and O. Pineada. 1999. Identification of molecular markers associated with leptine production in a population of Solanum chacoense bitter. Theoretical and Applied Genetics 98: 39–46.

    Article  CAS  Google Scholar 

  • Sagredo, B., N. Balbyshev, A. Lafta, H. Casper, and J. Lorenzen. 2009. A QTL that confers resistance to Colorado potato beetle (Leptinotarsa decemlineata [say]) in tetraploid potato populations segregating for leptine. Theoretical and Applied Genetics 119: 1171–1181.

    Article  PubMed  Google Scholar 

  • Sánchez-Maldonado, A.F., A. Schieber, and M.G. Gänzle. 2016. Antifungal activity of secondary plant metabolites from potatoes (Solanum tuberosum L.): Glycoalkaloids and phenolic acids show synergistic effects. Journal of Applied Microbiology 120: 955–965.

    Article  CAS  PubMed  Google Scholar 

  • Sanford, L., K. Deahl, and S. Sinden. 1994. Glycoalkaloid content in foliage of hybrid and backcross populations from a Solanum tuberosum X S. chacoense cross. American Journal of Potato Research 71: 225–235.

    Article  CAS  Google Scholar 

  • Sawai, S., K. Ohyama, S. Yasumoto, H. Seki, T. Sakuma, T. Yamamoto, Y. Takebayashi, M. Kojima, H. Sakakibara, T. Aoki, T. Muranaka, K. Saito, and N. Umemoto. 2014. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. The Plant Cell 26: 3763–3774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakya, R., and D.A. Navarre. 2008. LC-MS analysis of solanidane glycoalkaloid diversity among tubers of four wild potato species and three cultivars (Solanum tuberosum). Journal of Agricultural and Food Chemistry 56: 6949–6958.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S.K., D. Bolser, J. de Boer, M. Sønderkær, W. Amoros, M.F. Carboni, J.M. D’Ambrosio, G. de la Cruz, A. Di Genova, D.S. Douches, M. Eguiluz, X. Guo, F. Guzman, C.A. Hackett, J.P. Hamilton, G. Li, Y. Li, R. Lozano, A. Maass, D. Marshall, D. Martinez, K. McLean, N. Mejía, L. Milne, S. Munive, I. Nagy, O. Ponce, M. Ramirez, R. Simon, S.J. Thomson, Y. Torres, R. Waugh, Z. Zhang, S. Huang, R.G.F. Visser, C.W.B. Bachem, B. Sagredo, S.E. Feingold, G. Orjeda, R.E. Veilleux, M. Bonierbale, J.M.E. Jacobs, D. Milbourne, D.M.A. Martin, and G.J. Bryan. 2013. Construction of reference chromosome-scale pseudomolecules for potato: Integrating the potato genome with genetic and physical maps. G3: Genes|Genomes|Genetics 3: 2031–2047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinden, S.L., L.L. Sanford, W.W. Cantelo, and K.L. Deahl. 1986. Leptine glycoalkaloids and resistance to the Colorado potato beetle (Coleoptera: Chrysomelidae) in Solanum chacoense. Environmental Entomology 15: 1057–1062.

    Article  CAS  Google Scholar 

  • Song, S., H. Huang, H. Gao, J. Wang, D. Wu, X. Liu, S. Yang, Q. Zhai, C. Li, and T. Qi. 2014. Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. The Plant Cell 26: 263–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sørensen, K.K., H.G. Kirk, K. Olsson, R. Labouriau, and J. Christiansen. 2008. A major QTL and an SSR marker associated with glycoalkaloid content in potato tubers from Solanum tuberosum× S. sparsipilum located on chromosome I. Theoretical and Applied Genetics 117: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Tai, H.H., K. Worrall, Y. Pelletier, D. De Koeyer, and L.A. Calhoun. 2014. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance. Journal of Agricultural and Food Chemistry 62: 9043–9055.

    Article  CAS  PubMed  Google Scholar 

  • Tai, H.H., K. Worrall, D. De Koeyer, Y. Pelletier, G.C. Tai, and L. Calhoun. 2015. Colorado potato beetle resistance in Solanum oplocense X Solanum tuberosum intercross hybrids and metabolite markers for selection. American Journal of Potato Research 92: 684–696.

    Article  CAS  Google Scholar 

  • Thagun, C., S. Imanishi, T. Kudo, R. Nakabayashi, K. Ohyama, T. Mori, K. Kawamoto, Y. Nakamura, M. Katayama, S. Nonaka, C. Matsukura, K. Yano, H. Ezura, K. Saito, T. Hashimoto, and T. Shoji. 2016. Jasmonate-responsive ERF transcription factors regulate steroidal glycoalkaloid biosynthesis in tomato. Plant and Cell Physiology 57: 961–975.

    Article  CAS  PubMed  Google Scholar 

  • Umemoto, N., M. Nakayasu, K. Ohyama, M. Yotsu-Yamashita, M. Mizutani, H. Seki, K. Saito, and T. Muranaka. 2016. Two cytochrome P450 monooxygenases catalyze early hydroxylation steps in the potato steroid glycoalkaloid biosynthetic pathway. Plant Physiology 171: 2458–2467.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yencho, G.C., S.P. Kowalski, R.S. Kobayashi, S.L. Sinden, M.W. Bonierbale, and K.L. Deahl. 1998. QTL mapping of foliar glycoalkaloid aglycones in Solanum tuberosum X S. berthaultii potato progenies: Quantitative variation and plant secondary metabolism. Theoretical and Applied Genetics 97: 563–574.

    Article  CAS  Google Scholar 

  • Zhu, Z., F. An, Y. Feng, P. Li, L. Xue, A. Mu, Z. Jiang, J.-M. Kim, T.K. To, and W. Li. 2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proceedings of the National Academy of Sciences 108: 12539–12544.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Leslie Campbell for running MS and collecting metabolomics data, Katheryn Douglass for DNA sequencing, Catherine Clark for providing support for evaluation of CPB defoliation in field conditions, Charlotte Davidson for technical assistance and arrangements in lab, and Woojong Rho and Jaclyn Retallick for collecting leaf samples from 100 potato germplasm lines and helping in DNA extractions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamuna Risal Paudel.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest to disclose.

Electronic supplementary material

Supplementary figure S1

Total ion chromatograph for two parents a) S. tuberosum cv Shepody and b) 13213–07. (PNG 84 kb)

High Resolution Image (EPS 877 kb)

Supplementary figure S2

Known genes involved in steroidal gycoalkaloid (SGA) biosynthesis pathway. A) Physical location of SGA biosynthesis genes. Letter ‘a’ and ‘b’ indicate known genes in primary and secondary pathways, respectively, in SGA biosynthesis as shown in B. b) Schematic diagram of SGA biosynthesis pathway with intermediate products and genes involved. (PNG 223 kb)

High Resolution Image (EPS 1102 kb)

ESM 1

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paudel, J.R., Gardner, K.M., Bizimungu, B. et al. Genetic Mapping of Steroidal Glycoalkaloids Using Selective Genotyping in Potato. Am. J. Potato Res. 96, 505–516 (2019). https://doi.org/10.1007/s12230-019-09734-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-019-09734-7

Keywords

Navigation