Skip to main content
Log in

Comparative Study of Soft Computing Methodologies for Energy Input–Output Analysis to Predict Potato Production

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

A Correction to this article was published on 28 November 2018

This article has been updated

Abstract

In this study, an adaptive neuro-fuzzy inference system (ANFIS) was developed to predict potato production in Iran. Data related to potato yield from 2010 to 2011 was collected from 50 potato producers in Hamedan, Iran. The resulting ANFIS network has an input layer with eight neurons and an output layer with a single neuron (potato yield). The energy inputs were manual labor, diesel, chemical fertilizers, and manure from farm animals, chemicals, machinery, water, and seed. The most significant and influential inputs were selected from the eight initial inputs and the ANFIS network was used to choose the parameters that have the most influence on potato yield. A new ANFIS model was created after the three most influential parameters were selected. The new ANFIS model was then utilized to estimate yield using the three energy inputs. Next, the ANFIS model results were compared with the results from the support vector regression (SVR) technique. The end results revealed that ANFIS provided more accurate predictions and had the capacity to generalize. The Pearson correlation coefficient (r) for ANFIS potato yield prediction was 0.9999 in the training and testing phases, while the SVR model had a correlation coefficient of 0.8484 in training and 0.9984 in testing.

Resumen

En este estudio se desarrolló un sistema de inferencia adaptativa de lógica difusa (ANFIS) para predecir la producción de papa en Irán. Se colectaron datos relacionados con el rendimiento de papa de 2010 a 2011 de 50 productores en Hamedan, Irán. La red ANFIS resultante tiene una capa de insumos con ocho neuronas y una capa de salidas con una única neurona (rendimiento de papa). Los insumos de energía fueron mano de obra, diésel, fertilizantes químicos y estiércol de animales de granja, químicos, maquinaria, agua y semilla. Se seleccionaron los insumos más significativos y de influencia de los ocho insumos iniciales, y se usó la red ANFIS para escoger los parámetros que tienen la mayor influencia en el rendimiento de papa. Se creó un nuevo modelo ANFIS después que se seleccionaron los tres parámetros de mayor influencia. Entonces se utilizó el nuevo modelo ANFIS para estimar rendimiento usando los tres insumos de energía. Después, los resultados del modelo ANFIS se compararon con los resultados de la técnica de regresión de vector de respaldo (SVR). Los resultados finales revelaron que ANFIS suministró predicciones más precisas y tuvo la capacidad de generalizar. El coeficiente de correlación de Pearson (r) para la predicción del rendimiento de papa por ANFIS fue 0.9999 en las fases de formación y de prueba, e el modelo SVR tuvo un coeficiente de correlación de 0.8484 en formación y 0.9984 en prueba.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 28 November 2018

    The Editor-in-Chief of American Journal of Potato Research is issuing an editorial expression of concern to alert readers that this article shows substantial indication of irregularities in authorship during the submission process.

References

  • Akbarzadeh, A., R.T. Mehrjardi, H. Rouhipour, M. Gorji, and H.G. Rahimi. 2009. Estimating of soil erosion coverd with rolled erosion control systems using rainfall simulator (neuro-fuzzy and artificial neural network approaches). Journal Applied Science Research 5: 505–514.

    Google Scholar 

  • Aldair, A.A., and W.J. Wang. 2011. Design an intelligent controller for full vehicle nonlinear active suspension systems. International Journal on Smart Sensing and Intelligent Systems 4: 224–243.

    Google Scholar 

  • Al-Ghandoor, A., and M. Samhouri. 2009. Electricity consumption in the industrial sector of Jordan: application of multivariate linear regression and adaptive neuro-fuzzy techniques. Jordan Journal of Mechanical and Industrial Engineering 3: 69–76.

    Google Scholar 

  • Andersson, F.O., M. Åberg, and S.P. Jacobsson. 2000. Algorithmic approaches for studies of variable influence, contribution and selection in neural networks. Chemometrics and Intelligent Laboratory Systems 51: 61–72.

    Article  CAS  Google Scholar 

  • Anonymous. 2012. Annual agricultural statistics. Ministry of Jahad-e-Agricultural of Iran.

  • Ayat, N.E., M. Cheriet, and C.Y. Suen. 2005. Automatic model selection for the optimization of SVM kernels. Pattern Recognition 38: 1733–1745.

    Article  Google Scholar 

  • Bolandnazar, E., A. Keyhani, and M. Omid. 2014. Determination of efficient and inefficient greenhouse cucumber producers using Data Envelopment Analysis approach, a case study: Jiroft city in Iran. Journal of Cleaner Production 5: 1–8.

    Google Scholar 

  • Brown, C.R., K.G. Haynes, M. Moore, M.J. Pavek, D.C. Hane, and S.L. Love. 2014. Stability and broad-sense heritability of mineral content in potato: copper and sulfur. American Journal of Potato Research 91: 618–624.

    Article  CAS  Google Scholar 

  • Castellano, G., and A.M. Fanelli. 2000. Variable selection using neural-network models. Neurocomputing 31: 1–13.

    Article  Google Scholar 

  • Chen, S.-T., P.-S. Yu, and Y.-H. Tang. 2010. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology 385: 13–22.

    Article  Google Scholar 

  • Cibas, T., F.F. Soulié, P. Gallinari, and S. Raudys. 1996. Variable selection with neural networks. Neurocomputing 12: 223–248.

    Article  Google Scholar 

  • Dieterle, F., S. Busche, and G. Gauglitz. 2003. Growing neural networks for a multivariate calibration and variable selection of time-resolved measurements. Analytica Chimica Acta 490: 71–83.

    Article  CAS  Google Scholar 

  • Esengun, K., O. Gunduz, and G. Erdal. 2007. Input-output energy analysis in dry apricot production of Turkey. Energy Conversion and Management 48: 592–598.

    Article  Google Scholar 

  • Geoffrey, A.P. 1994. Economic forecasting in agriculture. International Journal of Forecasting 10: 81–135.

    Article  Google Scholar 

  • Gocić, M., S. Motamedi, S. Shamshirband, D. Petković, S. Ch, R. Hashim, and M. Arif. 2015a. Soft computing approaches for forecasting reference evapotranspiration. Computers and Electronics in Agriculture 113: 164–173.

  • Gocić M, S. Motamedi, S. Shamshirband, D. Petković, and R. Hashim. 2015b. Potential of adaptive neuro-fuzzy inference system for evaluation of drought indices. Stochastic Environmental Research and Risk Assessment. doi:10.1007/s00477-014-0972-6

  • Hosoz, M., H.M. Ertunc, and H. Bulgurcu. 2011. An adaptive neuro-fuzzy inference system model for predicting the performance of a refrigeration system with a cooling tower. Expert Systems with Applications 38: 14148–14155.

    Google Scholar 

  • Ju, F.-Y., and W.-C. Hong. 2013. Application of seasonal SVR with chaotic gravitational search algorithm in electricity forecasting. Applied Mathematical Modelling 37: 9643–9651.

    Article  Google Scholar 

  • Khoshnevisan, B., S.H. Rafiee, M. Omid, and H. Mousazade. 2014. Development of intelligent based on ANFIS for predicting wheat grain yield on the basis of energy inputs. Information processing in agriculture. online first.

  • Khoshnevisan, B., S.H. Rafiee, M. Omid, H. Mousazadeh, S. Shamshirband, and S.H. Ab Hamid. 2015. Developing a fuzzy clustering model for better energy use in farm management systems. Renewable and Sustainable Energy Reviews 48: 27–34.

  • Krueger, E., S.A. Prior, D. Kurtener, H.H. Rogers, and G.B. Runion. 2011. Characterizing root distribution with adaptive neuro-fuzzy analysis. International Agrophysics 25: 93–96.

    Google Scholar 

  • Kurnaz, S., O. Cetin, and O. Kaynak. 2010. Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. Expert Systems with Applications 37: 1229–1234.

    Article  Google Scholar 

  • Kwong, C.K., T.C. Wong, and K.Y. Chan. 2009. A methodology of generating customer satisfaction models for new product development using a neuro-fuzzy approach. Expert Systems with Applications 36: 11262–11270.

    Article  Google Scholar 

  • Larkin, R.P., and J.M. Halloran. 2010. Management effects of disease-suppressive rotation crops on potato yield and soilborne disease and their economic implications in potato production. American Journal of Potato Research 91: 429–439.

    Article  Google Scholar 

  • Mobtaker, H.G., A. Keyhani, A. Mohammadi, S.H. Rafiee, and A. Akram. 2010. Sensitivity analysis of energy inputs for barely production in Hamedan Province of Iran. Agriculture Ecosystems and Environment 137: 367–372.

    Article  Google Scholar 

  • Ozkan, B., H. Akcaoz, and C. Fert. 2004. Energy input-output analysis in Turkish agriculture. Renewable Energy 29: 39–57.

    Article  Google Scholar 

  • Pahlavan, R., M. Omid, and A. Akram. 2012. Energy input-output analysis and application of artificial neural networks for predicting greenhouse basil production. Energy 37: 171–176.

    Article  CAS  Google Scholar 

  • Petković, D., and Ž. Ćojbašić. 2012. Adaptive neuro-fuzzy estimation of autonomic nervous system parameters effect on heart rate variability. Neural Computing and Applications 21: 2065–2070.

    Article  Google Scholar 

  • Raghavendra, S.N., and P.C. Deka. 2014. Support vector machine applications in the field of hydrology: a review. Applied Soft Computing 19: 372–386.

    Article  Google Scholar 

  • Rajabi-Hamedani, S., A. Keyhani, and R. Alimardani. 2011. Energy use patterns and econometric models of grape production in Hamedan province of Iran. Energy 36: 6345–6351.

    Article  Google Scholar 

  • Ravi, S., M. Sudha, and P.A. Balakrishnan. 2011. Design of intelligent self-tuning GA ANFIS temperature controller for plastic extrusion system. Modelling and Simulation in Engineering 2011: 1–8.

    Article  Google Scholar 

  • Rykaczewska, K. 2015, The Effect of High Temperature Occurring in Subsequent Stages of Plant Development on Potato Yield and Tuber Physiological Defects. American Journal of Potato Research, online first.

  • Salami, P., and H. Ahmadi. 2010. Energy inputs and outputs in a chickpea production system in Kurdistan, Iran. African Crop Science Journal 18: 51–57.

    Google Scholar 

  • Samavatean, N., S.H. Rafiee, H. Mobli, and A. Mohamadi. 2011. An analysis of energy use and relation between energy inputs and yield, costa and income of garlic production in Iran. Renewable Energy 36: 1808–1813.

    Article  Google Scholar 

  • Sivakumar, R., and K. Balu. 2010. ANFIS based distillation column control. IJCA Special Issue on Evolutionary Computation 2: 67–73.

    Google Scholar 

  • Sivapragasam, C., S.-Y. Liong, and M.F.K. Pasha. 2001. Rainfall and runoff forecasting with SSA-SVM approach. Journal of Hydroinformatics 3(3): 141–152.

    Google Scholar 

  • Sofge, D. 2002. Using genetic algorithm based variable selection to improve neural network models for real-world systems, 16–19. Las Vegas: Proceedings of theInternational Conference on Machine Learning and Applications.

    Google Scholar 

  • Taherri-Garavand, A., A. Asakereh, and K. Haghani. 2010. Energy elevation and economic analysis of canola production in Iran a case study: Mazandaran province. International Journal of Environmental Sciences 1: 1–10.

    Google Scholar 

  • Tian, L., and C. Collins. 2005. Adaptive neuro-fuzzy control of a flexible manipulator. Mechatronics 15: 1305–1320.

    Article  Google Scholar 

  • Wang, T., H. Huang, S. Tian, and J. Xu. 2010. Feature selection for SVM via optimization of kernel polarization with Gaussian ARD kernels. Expert Systems with Applications 37: 6663–6668.

    Article  Google Scholar 

  • Yang, H., K. Huang, I. King, and M.R. Lyu. 2009. Localized support vector regression for time series prediction. Neurocomputing 72: 2659–2669.

    Article  Google Scholar 

  • Yang, X., L. Tan, and L. He. 2014. A robust least squares support vector machine for regression and classification with noise. Neurocomputing 140: 41–52.

    Article  Google Scholar 

  • Yousefi, M., B. Khoshnevisan, S. Shamshirband, S. Motamedi, M.H.N Md. Nasir, M. Arif, and R. Ahmad. Support vector regression methodology for prediction of output energy in rice production. Stochastic Environmental Research and Risk Assessment. doi:10.1007/s00477-015-1055-z

  • Zangeneh, M., Omid, M., Akram, A. A comparative study between parametric and artificial neural networks approaches for economical assessment of potato production in Iran. Spanish Journal of Agricultural Research 9: 661–671

  • Zhang, L., W.-D. Zhou, P.-C. Chang, J.-W. Yang, and F.-Z. Li. 2013. Iterated time series prediction with multiple support vector regression models. Neurocomputing 99: 411–422.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Bright Spark Unit, University of Malaya, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahaboddin Shamshirband.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajabi Hamedani, S., Liaqat, M., Shamshirband, S. et al. Comparative Study of Soft Computing Methodologies for Energy Input–Output Analysis to Predict Potato Production. Am. J. Potato Res. 92, 426–434 (2015). https://doi.org/10.1007/s12230-015-9453-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-015-9453-9

Keywords

Navigation