Skip to main content
Log in

Distribution and Morphological Diversity of Palaeocarpinus (Betulaceae) from the Paleogene of the Northern Hemisphere

  • Review
  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The extinct betulaceous genus Palaeocarpinus accommodates fossils with a mixture of characters shared by fruits of the extant genera Carpinus and Corylus. Originally described from the Paleocene of southeastern England, the genus has since been recognized in other parts of Europe, North America and Asia, and into the Eocene. Currently, descriptions exist for ten named Palaeocarpinus species. Here we present a comparative review of all known Palaeocarpinus species to evaluate morphology and diversity. We recognize a broader North American range for the Paleocene species P. joffrensis, and establish three new species, including two from the Paleocene of Wyoming, P. pterabaratra and P. pteravestigia, and one from the Eocene of Oregon, P. parva. We also update nomenclature for the species previously recognized from the Paleocene of France. Lastly, we discuss the morphological diversity and characteristics of bracts within Palaeocarpinus, and compare the involucres and nuts to those of extant Carpinus and Corylus to, and consider the evolutionary implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Abbe refers to the stele as a dictyostele; it is evident from the diagram that it is a eustele by modern standards and likely an artifact of changes in terminology

Literature Cited

  • Abbe, E. C. 1935. Studies in the phylogeny of the Betulaceae. I. Floral and inflorescence anatomy and morphology. Botanical Gazette 97(1): 1–67.

    Google Scholar 

  • Abbe, E. C. 1938. Studies in the phylogeny of the Betulaceae. II. Extremes in the range of variation of floral and inflorescence morphology. Botanical Gazette 99(3): 431–469.

    Google Scholar 

  • Abbe, E. C. 1974. Flowers and inflorescences of the “Amentiferae”. Botanical Review 40(2): 159–261.

    Article  Google Scholar 

  • Akhmetiev, M. A. 2007. Paleocene and Eocene floras of Russia and adjacent regions: Climatic conditions of their development. Paleontological Journal, 41(11), 1032–1039.

    Article  Google Scholar 

  • Akhmetiev, M. A. 2010. Paleocene and Eocene floristic and climatic change in Russia and Northern Kazakhstan. Bulletin of Geosciences 85(1): 17–34.

    Google Scholar 

  • Akhmetiev, M. A., & L. B. Golovneva. 1998. New data on the composition and age of the Malo-Mikhailovka flora (Danian of the Lower Reaches of the Amur River). Stratigrafia, geologicheskaia korreliatsiia 6: 43–55.

    Google Scholar 

  • Akhmetiev, M. A., & S. R. Manchester. 2000. A new species of Palaeocarpinus (Betulaceae) from the Paleogene of the Eastern Sikhote-Alin. Paleontological Journal 34(4): 469–474.

    Google Scholar 

  • Augspurger, C. K. 1986. Morphology and dispersal potential of wind-dispersed diaspores of Neotropical trees. American Journal of Botany 73: 353–363.

    Article  Google Scholar 

  • Basinger, J. F. 1981. The vegetative body of Metasequoia milleri from the Middle Eocene of southern British Columbia. Canadian Journal of Botany 59(12): 2379–2410.

    Article  Google Scholar 

  • Berger, W. 1953. Studien zur Systematik und Geschichte der Gattung Carpinus. Botaniska Notiser 1: 1–47.

    Google Scholar 

  • Bonner, F. T. & R. P. Karrfalt. 2008. The Woody Plant Seed Manual. United States Department of Agriculture, Forest Service, Agriculture Handbook 727.

  • Boulter, M. C. & Z. Kvaček. 1989. The Palaeocene flora of the Isle of Mull Incorporating unpublished observations by A.C. Seward and W.N. Edwards. Special Papers in Paleontology 42: 1–149.

  • Brown, R. W. 1948. Correlation of Sentinel Butte shale in western North Dakota. AAPG Bulletin 32(7): 1265–1274.

    Google Scholar 

  • Brown, R. W. 1962. Paleocene flora of the Rocky Mountains and Great Plains. United States Geological Survey Professional Paper 375: 1–119.

    Google Scholar 

  • Budantsev, L. Y. & L. B. Golovneva. 2009. Fossil Flora of Arctic II. Paleogene Flora of Spitsbergen. Russina Academy of Sciences, Komarov Botanical Institute. Marafon, Saint Petersburg: 400.

  • Chang, C. S. & J. I. Jeon. 2004. Foliar flavonoids of the most primitive group, sect. Distegocarpus within the genus Carpinus. Biochemical Systematics and Ecology 32(1): 35–44.

    Article  CAS  Google Scholar 

  • Chen, Z. D., S. R. Manchester & H. Y. Sun. 1999. Phylogeny and evolution of the Betulaceae as inferred from DNA sequences, morphology, and paleobotany. American Journal of Botany 86(8): 1168–1181.

  • Collinson, M. E. & P. F. van Bergen. 2004. Evolution of angiosperm fruit and seed dispersal biology and ecophysiology: morphological, anatomical and chemical evidence from fossils. pp. 343-377 in A. R. Hemsley, I. Poole, eds., The evolution of plant physiology. Elsevier.

  • Crane, P. R. 1981. Betulaceous leaves and fruits from the British Upper Palaeocene. Botanical Journal of the Linnean Society 83(2): 103–136.

    Article  Google Scholar 

  • Crane, P. R. 1989. Early Fossil History and Evolution of the Betulaceae. In P. R. Crane, & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Volume 2. Higher Hamamelidae. Systematic Association, 40B: 87–116. Clarendon Press, Oxford, England.

  • Crane PR, S. R. Manchester & D. L. Dilcher. 1990. A preliminary survey of fossil leaves and well-preserved reproductive structures from the Sentinel Butte Formation (Paleocene) near Almont, North Dakota. Fieldiana Geology 1418: 1–63.

    Google Scholar 

  • Crane PR, Stockey R.. 1987. Betula leaves and reproductive structures from the Middle Eocene of British Columbia, Canada. Canadian Journal of Botany 65(12): 2490–2500.

  • Crane, P. R., & R. A. Stockey. 1985. Growth and reproductive biology of Joffrea speirsii gen. et sp. nov., a Cercidiphyllum-like plant from the Late Paleocene of Alberta, Canada. Canadian Journal of Botany: 63(2): 340–364.

  • Cronquist, A. 1981. An Integrated System of Classification of Flowering Plants. Columbia University Press.

  • Dawson, G. M. 1889. The Mineral wealth of British Columbia, with an annotated list of localities of minerals of economic value. In Geological Survey of Canada, Annual Report vol. 3, pt. 2, Report R (1889). Montreal: William Foster Brown and Co.

  • Dawson, J. W. 1890 On fossil plants from the Similkameen Valley and other places in the southern interior of British Columbia. Proceedings and Transactions of the Royal Society of Canada for the Year 1890, Sect. VIII: 75–90.

  • Demchuk, T. D. & L. V. Hills. 1991. A re-examination of the Paskapoo Formation in the central Alberta Plains: the designation of three new members. Bulletin of Canadian Petroleum Geology 39(3): 270–282.

    Google Scholar 

  • Dilcher, D. L. 1974. Approaches to the identification of angiosperm leaf remains. The Botanical Review 40(1): 1–157.

    Article  Google Scholar 

  • Dillhoff, R. M., T. A. Dillhoff, R. E. Dunn, J. A. Myers & C. A. Strömberg. 2009. Cenozoic paleobotany of the John Day Basin, central Oregon. Volcanoes to Vineyards: geologic field trips through the dynamic landscape of the Pacific Northwest. Geological Society of America Field Guide 15: 135–164.

    Google Scholar 

  • Dillhoff, R. M., Dillhoff, T. A., D. R. Greenwood, M. L. DeVore & K. B. Pigg. 2013. The Eocene Thomas Ranch flora, Allenby Formation, Princeton, British Columbia, Canada. Botany 91(8): 514–529.

    Article  Google Scholar 

  • Ellis, B. D., C. Douglas, L. J. Hickey, K. R. Johnson, J. D. Mitchell, P. Wilf & S. L. Wing. 2009. Manual of Leaf Architecture. The New York Botanical Garden Press. Ithaca, New York.

  • English, J. M. & S. T. Johnston. 2004. The Laramide orogeny: What were the driving forces? International Geology Review 46(9): 833–838.

    Article  Google Scholar 

  • Eriksson, O. 2008. Evolution of seed size and biotic seed dispersal in angiosperms: paleoecological and neoecological evidence. International Journal of Plant Sciences 169(7): 863–870.

    Article  Google Scholar 

  • Fan, M. & B. Carrapa. 2014. Late Cretaceous–early Eocene Laramide uplift, exhumation, and basin subsidence in Wyoming: Crustal responses to flat slab subduction. Tectonics 33(4):509–529.

    Article  Google Scholar 

  • Feng, C. M., Liu, X., Yu, Y., Xie, D., Franks, R. G., & Xiang, Q. Y. 2012. Evolution of bract development and B-class MADS box gene expression in petaloid bracts of Cornus s.l. (Cornaceae). New Phytologist, 196(2): 631–643.

    Article  CAS  PubMed  Google Scholar 

  • Finn, T. M. 2007. Subsurface stratigraphic cross sections of Cretaceous and lower Tertiary rocks in the Wind River Basin, central Wyoming. Petroleum systems and geologic assessment of oil and gas in the Wind River Basin Province, Wyoming. United States Geological Survey Digital Data Series DDS-69-J: 32.

  • Forbes, E. 1851. A note on the vegetable remains from Ardtun Head. Quarterly Journal of the Geological Society of London 7: 1–112.

    Google Scholar 

  • Forest, F. 1999. Implications des analyses phylogénétiques et biogéographiques de l'espaceur des gènes ribosomaux 5S chez le genre Corylus, Betulaceae. PhD Dissertation.

  • Forest, F., V. Savolainen, M. W. Chase, R. Lupia, A. Bruneau & P. R. Crane. 2005. Teasing apart molecular-versus fossil-based error estimates when dating phylogenetic trees: a case study in the birch family (Betulaceae). Systematic Botany 30(1): 118–133.

    Article  Google Scholar 

  • Forsman, N. F. 1985. Petrology of the Sentinel Butte Formation (Paleocene), North Dakota. PhD Dissertation, University of North Dakota, Grand Forks, North Dakota. 235 pp. https://commons.und.edu/theses/96

  • Fryer, J. L. 2007. Corylus cornuta. In: Fire Effects Information System [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: https://www.fs.fed.us/database/feis/plants/shrub/corcor/all.html [2020, August 12].

  • Gachet, S., A. Leduc, Y. Bergeron, T. Nguyen-Xuan & F. Tremblay. 2007. Understory vegetation of boreal tree plantations: differences in relation to previous land use and natural forests. Forest Ecology and Management 242(1): 49–57.

    Article  Google Scholar 

  • Gemmill, C. E. C. & K. R. Johnson. 1997. Paleoecology of a late Paleocene (Tiffanian) megaflora from the northern Great Divide Basin, Wyoming. PALAIOS 12: 439–448.

    Article  Google Scholar 

  • Geomar. 2011 “ODSN Maps.” ODSN, University Bremen, http://www.odsn.de/odsn/index.html.

  • Golovneva, L. B. 2002. Palaeocarpinus (Betulaceae) from the Paleogene of Spitsbergen and transatlantic floristic migrations. Paleontological Journal 36(4): 422–428.

    Google Scholar 

  • Grande, L. & M. De Pinna. 1998. Description of a second species of the catfish Hypsidoris and a reevaluation of the genus and the family Hypsidoridae. Journal of Vertebrate Paleontology 18(3): 451–474.

    Article  Google Scholar 

  • Grimm, G. W. & S. S. Renner. 2013. Harvesting Betulaceae sequences from GenBank to generate a new chronogram for the family. Botanical Journal of the Linnean Society 172(4): 465–477.

    Article  Google Scholar 

  • Guo, S.-X, Z.-H. Sun, H.-M. Li & Y. W. Dou. 1984. Paleocene megafossil flora from Altai of Xingjiang. Bulletin of the Nanjing Institute of Geological Palaeontology, Academica Sinica 8: 119–146 (In Chinese with English summary).

    Google Scholar 

  • Hagerup, O. 1942. The morphology and biology of the Corylus-fruit. Kongelige Danske Videnskabernes Selskab Biologiske Meddelelser 17(6): 3–32.

    Google Scholar 

  • Heer, O. 1859. Flora Tertiaria Helvetiae III. Wurster und Comp., Winterthur, 378 pp.

  • Heer, O. 1876. Flora fossilis arctica. 4.1. Beiträge zur fossilen Flora Spitzbergens. K Svenska Vetenskaps-Akademiens Handlingar 14: 1–141.

    Google Scholar 

  • Hickey, L. J. 1977. Stratigraphy and paleobotany of the Golden Valley Formation (early Tertiary) of western North Dakota. Geological Society of America Memoir 150: 1–181.

    Google Scholar 

  • Hills, L. V. 1962. Glaciation, stratigraphy, structure and micropaleobotany of the Princeton coalfield, British Columbia. M.Sc. Thesis, The University of British Columbia, Vancouver, British Columbia.

  • Hjelmqvist, H., 1948. Studies on the floral morphology and phylogeny of the Amentiferae. Botaniska Notiser, Supplement 2: 6–171

    Google Scholar 

  • Holtzman, R. C. 1978. Late Paleocene mammals of the Tongue River Formation, western North Dakota. North Dakota Geological Survey Report of Investigation 65: 1–88.

    Google Scholar 

  • Hong, D. Y. & Blackmore, S. (eds.). 2015. Plants of China: A companion to the flora of China. Cambridge University Press. Pg. 103–120.

  • Hooker, J. J. 2005. Tertiary to Present: Paleocene. Pp. 459-465 in Selley, R. C.; Cocks, R.; Plimer, I. R. (eds.). Encyclopedia of Geology. 5. Elsevier Limited.

  • Hussain, Q., Shi, J., Scheben, A., Zhan, J., Wang, X., Liu, G.,Yan, G., King, G., Edwards, D., & Wang, H. (2020). Genetic and signalling pathways of dry fruit size: targets for genome editing-based crop improvement. Plant Biotechnology Journal, 18(5), 1124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jentys-Szaferowa, J. M. 1961. Anatomical investigations on fossil fruits of the genus Carpinus in Poland. Acta Palaeobotanica 2: 1–33.

    Google Scholar 

  • Johnson, W. C. & T. Webb III. 1989. The role of blue jays (Cyanocitta cristata L.) in the postglacial dispersal of fagaceous trees in eastern North America. Journal of Biogeography 16(6): 561–571.

    Article  Google Scholar 

  • Keefer, W. R. 1965. Stratigraphy and geologic history of the uppermost Cretaceous, Paleocene, and lower Eocene rocks in the Wind River Basin, Wyoming. United States Geological Survey Professional Paper 495-A: 1–77).

  • Kovačić, S. & D. Šimić. 2001. Intrapopulational and interpopulational relations of Betula pendula Roth (Betulaceae) in Croatia, based on leaf morphometry. Acta Biologica Cracoviensia Series Botanica 43: 87–96.

    Google Scholar 

  • Krause, D. W. 1978. Paleocene primates from western Canada. Canadian Journal of Earth Sciences 15(8): 1250–1271.

    Article  Google Scholar 

  • Krüssmann, G. 1984. Manual of cultivated broad-leaved trees and shrubs. Vol. 1: A–D. Translated by Epp M. Timber Press, Portland. 488 pp.

  • Larson-Johnson, K. 2016. Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales. New Phytologist 209(1): 418–435.

    Article  CAS  PubMed  Google Scholar 

  • Laurent, L. 1912a. Flore fossile des schistes de Menat (Puy-de-Dôme). Annales Du Musée D’histoire Naturelle De Marseille. -Géologie. 14: 1–246.

    Google Scholar 

  • Laurent, L., 1912b. Sur la présence du genre “Atriplex” dans la flore fossile de Menat (Puy-De-Dôme). Comptes rendus de l’Association Française pour l’Avancement des Sciences, Congrès de Dijon 1911. 40: 379-385.

    Google Scholar 

  • Laurent, L. 1912c. À propos des échantillons des schistes à végétaux de Menat (Puy-de-Dôme). Bulletin de la Société neuchâteloise des sciences naturelles 39: 121–136.

    Google Scholar 

  • Lavanchy, G. & T. Malvesy. 2016. Les collections du muséum d’histoire naturelle de Neuchâtel: Les végétaux fossiles de Georges de Tribolet (1830-1873). Bulletin de la Société Neuchâteloise des Sciences Naturelles 136: 5–21.

    Google Scholar 

  • Lewis, S. E. & M. A. Carroll. 1991. Coleopteraus egg deposition on alder leaves from the Klondike Mountain Formation (middle Eocene), northeastern Washington. Journal of Paleontology 65(2): 334–335.

    Article  Google Scholar 

  • Lillegraven, J. A. 2004. Revisions to Upper Cretaceous stratigraphy near Hell’s Half Acre, eastern Wind River Basin, central Wyoming. Bulletin of Carnegie Museum of Natural History 36: 137–158.

    Article  Google Scholar 

  • Mai, D. 1995. Tertiäre Vegetationsgeschichte Europas. Fischer, Jena.

  • Major, H. & J. Nagy. 1972. Geology of the Adventdalen map area: with a geological map, Svalbard C9G 1: 100 000.

  • Manchester, S. R. 1990. Eocene to Oligocene floristic changes recorded in the Clarno and John Day Formations, Oregon, USA. Pp. 183–187. In: Symposium proceedings: paleofloristic and paleoclimatic changes in the Cretaceous and Tertiary. Geological Survey, Prague.

  • Manchester, S. R. 1994. Fruits and seeds of the Middle Eocene Nut Beds flora, Clarno Formation, Oregon. Palaeontographica Americana 58: 1–205.

    Google Scholar 

  • Manchester, S. R., & Z. D. Chen. 1996. Palaeocarpinus aspinosa sp. nov. (Betulaceae) from the Paleocene of Wyoming, USA. International Journal of Plant Sciences 157(5): 644–655.

    Article  Google Scholar 

  • Manchester, S. R., & S. X. Guo. 1996. Palaeocarpinus (extinct Betulaceae) from northwestern China: new evidence for Paleocene floristic continuity between Asia, North America, and Europe. International Journal of Plant Sciences 157(2): 240–246.

    Article  Google Scholar 

  • Manchester, S. R., K. B. Pigg & P. R. Crane. 2004. Palaeocarpinus dakotensis sp. n. (Betulaceae: Coryloideae) and associated staminate catkins, pollen, and leaves from the Paleocene of North Dakota. International Journal of Plant Sciences 165(6): 1135–1148.

    Article  Google Scholar 

  • Manum, S. B. & T. Throndsen. 1986. Age of Tertiary formations on Spitsbergen. Polar Research 4(2): 103–131.

    Article  Google Scholar 

  • Maslova, N. P. 2010. Systematics of fossil platanoids and hamamelids. Paleontological Journal 44(11): 1379–1466.

    Article  Google Scholar 

  • Mathewes, R. W., Greenwood, D. R. & Archibald, S. B. 2016. Paleoenvironment of the Quilchena flora, British Columbia, during the early Eocene climatic optimum. Canadian Journal of Earth Sciences 53(6): 574–590.

  • McKenna, M. C. & J. A. Lillegraven. 2005. Problems with Paleocene palynozones in the Rockies: Hell’s Half Acre revisited. Journal of Mammalian Evolution 12(1–2): 23–51.

    Article  Google Scholar 

  • Mulch, A., C. Teyssier, M. A. Cosca, & C. P. Chamberlain. 2007. Stable isotope paleoaltimetry of Eocene core complexes in the North American Cordillera. Tectonics, 26(4).

  • Nesemeier, B. D. 1981. Stratigraphy and sedimentology of the Sentinel Butte Formation (Paleocene) near Lost Bridge, Dunn County, west-central North Dakota. Theses and Dissertations. 209. https://commons.und.edu/theses/209

  • Nichols, D. J. 2009. On the palynomorph-based biozones in Paleogene strata of Rocky Mountain basins. The Mountain Geologist 46(3): 105–124.

    Google Scholar 

  • Nichols, D. J, & R. M. Flores. 1993. Palynostratigraphic correlation of the Fort Union Formation (Paleocene) in the Wind River Reservation and Waltman area, Wind River Basin, Wyoming. Pp. 179–189 In Oil and Gas and Other Resources of the Wind River Basin, Wyoming; Wyoming Geological Association Special Symposium.

  • Nichols, D. J, & H. L. Ott. 1978. Biostratigraphy and evolution of the Momipites-Caryapollenites lineage in the early Tertiary in the Wind River Basin, Wyoming. Palynology 2(1): 93–112.

    Article  Google Scholar 

  • Panichev, A. M., V. K. Popov, I. Y. Chekryzhov, I. V. Seryodkin, T. A. Stolyarova, S. V. Zakusin, A. A. Sergievich, & Khoroshikh, P. P. 2016. Rare earth elements upon assessment of reasons of the geophagy in Sikhote-Alin region (Russian Federation), Africa and other world regions. Environmental geochemistry and health 38(6), 1255–1270.

    Article  CAS  PubMed  Google Scholar 

  • Penhallow, D. P. 1908. Report on Tertiary Plants of British Columbia collected by Lawrence M. Lambe in 1906: Together with a discussion of previously recorded Tertiary floras. Department of Mines, Geological Survey Branch, Ottawa, Ontario 1013: 1–167, 34 text-figs.

  • Pigg, K. B., S. R. Manchester & W. C. Wehr. 2003. Corylus, Carpinus, and Palaeocarpinus (Betulaceae) from the middle Eocene Klondike Mountain and Allenby formations of northwestern North America. International Journal of Plant Sciences 164(5): 807–822.

    Article  Google Scholar 

  • Pigg, K. B. & W. C. Wehr. 2002. Tertiary flowers, fruits, and seeds of Washington State and adjacent areas-Part III. Washington Geology 30(3/4): 3–16.

    Google Scholar 

  • Pijut, P. M. 2008. Carpinus L. In: F. T. Bonner & R. P. Karrfalt, (eds.), Woody plant seed manual. United States Department of Agriculture, Forest Service, Agricultural Handbook 727: 328–332.

  • Plotze, R. D. O., M. Falvo, J. G. Pádua, L. C. Bernacci, M. L. C. Vieira, G. C. X. Oliveira & O. M. Bruno. 2005. Leaf shape analysis using the multiscale Minkowski fractal dimension, a new morphometric method: a study with Passiflora (Passifloraceae). Canadian Journal of Botany 83(3): 287–301.

    Article  Google Scholar 

  • Rothwell, G. W. & R. A. Stockey. 1991. Onoclea sensibilis in the Paleocene of North America, a dramatic example of structural and ecological stasis. Review of Palaeobotany and Palynology 70(1–2): 113–124.

    Article  Google Scholar 

  • Saporta, G. de 1877. L’Ancienne Végétation Polaire. Comptes Rendus Congrès. Paris: Int. Sci. Geogr.

    Google Scholar 

  • Saporta, G. de, & A. F. Marion. 1885. L’évolution du règne végétal. Les Phanérogames Tome 2. Bibliothèque Scientifique Internatinale publiée sous la direction de M. Em. Algave 53, 1–248.

    Google Scholar 

  • Sauquet, H., S. Y. Ho, M. A. Gandolfo, G. J. Jordan, P. Wilf, D. J. Cantrill, D. M. Lee, M. J. Bayly, L. Bromham, G. K. Brown, R. J. Carpenter, D. M. Lee, D. J. Murphy, J. M. K. Sniderman & F. Udovicic. 2012. Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Systematic Biology 61(2): 289–313.

    Article  PubMed  Google Scholar 

  • Schenk, M. F., C. N. Thienpont, W. J. Koopman, L. J. Gilissen & M. J. Smulders. 2008. Phylogenetic relationships in Betula (Betulaceae) based on AFLP markers. Tree Genetics & Genomes 4(4): 911.

    Article  Google Scholar 

  • Senn, J., S. Hanhimäki & E. Haukioja. 1992. Among-tree variation in leaf phenology and morphology and its correlation with insect performance in the mountain birch. Oikos 63(2): 215–222.

    Article  Google Scholar 

  • Seward, A. C. & R. E. Holttum 1924. Tertiary plants from Mull. Pp. 67–90 In E.B. Bailey, C.T. Clough, W.B. Wright, J.E. Richey & G.V. Wilson (eds.), Tertiary and Post-Tertiary geology of Mull, Loch Aline and Oban. Memoirs of the Geological Survey, Scotland.

  • Smith, M. E., A. R. Carroll, & B. S. Singer. 2008. Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States. GSA bulletin, 120(1–2): 54–84.

    Article  Google Scholar 

  • Smith, R. Y., J. F. Basinger, & D. R. Greenwood. 2009. Depositional setting, fossil flora, and paleoenvironment of the Early Eocene Falkland site, Okanagan Highlands, British Columbia. Canadian Journal of Earth Sciences, 46(11), 811–822.

    Article  Google Scholar 

  • Steel, R. J., A. Dalland, K. Kalgraff & V. Larsen. 1981. The central Tertiary basin of Spitsbergen: sedimentary development of a sheared-margin basin. Geology of the North Atlantic Borderlands Memoir 7: 647–664.

    Google Scholar 

  • Stockey, R. A., G. L. Hoffman, & M. J. Vavrek. 2014. Paleobotany and paleoecology of the Munce’s Hill fossil locality near Red Deer, Alberta, Canada. Paleobotany and Biogeography: A Festschrift for Alan Graham in his 80th year. Missouri Botanical Garden, St. Louis, 367–388.

    Google Scholar 

  • Stone, D. E. 1973. Patterns in the evolution of fruits. Brittonia 25(4): 371–384.

    Article  Google Scholar 

  • Sun, F. & R. A. Stockey. 1992. A new species of Palaeocarpinus (Betulaceae) based on infructescences, fruits, and associated staminate inflorescences and leaves from the Paleocene of Alberta, Canada. International Journal of Plant Sciences 153(1): 136–146.

    Article  Google Scholar 

  • Sun, Y. L., D. Wang, H. B. Lee, W. G. Park, O. W. Kwon & S. K. Hong. 2011. Phylogeny of Korean hornbeam (Carpinus turczaninovii) based on nuclear ribosomal ITS sequence. African Journal of Biotechnology 10(76): 17435–17442.

    Article  CAS  Google Scholar 

  • Tanai, T. 1972. Tertiary history of vegetation in Japan. In A. Graham (ed.), Floristics and paleofloristics of Asia and eastern North America (pp. 235–255). Elsevier, Amsterdam.

  • Uemura K, & T. Tanai. 1993. Betulaceous leaves and fruits from the Oligocene of Kitami, Hokkaido. Japanese Memoirs of the National Science Museum 26: 21–29.

    Google Scholar 

  • Vavrek, M. J., D. C. Evans, D. R. Braman, N. E. Campione & G. D. Zazula. 2012. A Paleogene flora from the upper Bonnet Plume formation of northeast Yukon Territory, Canada. Canadian Journal of Earth Sciences 49(3): 547–558.

    Article  Google Scholar 

  • Wang, S., Yang, B., Yang, Q., Lu, L., Wang, X. & Peng, Y. 2016. Temporal trends and spatial variability of vegetation phenology over the Northern Hemisphere during 1982–2012. PLoS One, 11(6), e0157134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wedmann, S., D. Uhl, T. Lehmann, R. Garrouste, A. Nel, B. Gomez, K. Smith. & S. F. K. Schaal. 2018. The Konservat-Lagerstätte Menat (Paleocene; France)–an overview and new insights. Geologica Acta 16(2): 189–213.

    Google Scholar 

  • Wehr, W. C. 1995. Early Tertiary flowers, fruits and seeds of Washington State and adjacent areas. Washington Geology 23(3): 3–16.

    Google Scholar 

  • Wehr, W. C, & D. Q. Hopkins. 1994. The Eocene orchards and gardens of Republic, Washington. Washington Geology 22(3): 27–34.

    Google Scholar 

  • Whitcher, I. N., & J. Wen. (2001). Phylogeny and biogeography of Corylus (Betulaceae): inferences from ITS sequences. Systematic Botany, 26(2), 283–298.

    Google Scholar 

  • Wilde, V. & H. Frankenhäuser. 1998. The Middle Eocene plant taphocoenosis from Eckfeld (Eifel, Germany). Review Palaeobotany Palynology 101: 7–28.

    Article  Google Scholar 

  • Wilson, M. V. 1978. Eohiodon woodruffi n. sp. (Teleostei, Hiodontidae), from the Middle Eocene Klondike Mountain Formation near Republic, Washington. Canadian Journal of Earth Sciences 15(5): 679–686.

    Article  Google Scholar 

  • Xiang, X. G., W. Wang, R. Q. Li, L. Lin, Y. Liu, Z. K. Zhou, Z. Y. Li, & Z. D. Chen. 2014. Large-scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diaspores and environments in the Paleogene. Perspectives in Plant Ecology, Evolution and Systematics, 16(3), 101–110.

    Article  Google Scholar 

  • Yang, Z., Zhao, T. T., Ma, H. Q., Liang, L. S. & Wang, G. X. 2018. Resolving the speciation patterns and evolutionary history of the intercontinental disjunct genus Corylus (Betulaceae) using genome-wide SNPs. Frontiers in plant science 9: 1386.

  • Yoo, K. O. & J. Wen. 2002. Phylogeny and biogeography of Carpinus and subfamily Coryloideae (Betulaceae). International Journal of Plant Sciences 163(4): 641–650.

    Article  Google Scholar 

  • Yoo, K. O. & J. Wen. 2007. Phylogeny of Carpinus and subfamily Coryloideae (Betulaceae) based on chloroplast and nuclear ribosomal sequence data. Plant Systematics and Evolution 267(1–4): 25–35.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dario De Franceschi of the Muséum national d’Histoire naturelle, Paris, for his invaluable help researching the fossils of Menat and Indah Huegele, University of Florida, for her discussions on leaf morphology and suggestions on discussion of polymorphism and intraspecific variation of leaves. We also thank Kahleen B. Pigg, Arizona State University, for comments and permission for the use of images. This work was supported in part by US National Science Foundation grants INT 0074295, EAR 9220079, and EAR 0174295.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian E. Correa-Narvaez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correa-Narvaez, J.E., Manchester, S.R. Distribution and Morphological Diversity of Palaeocarpinus (Betulaceae) from the Paleogene of the Northern Hemisphere. Bot. Rev. 88, 161–203 (2022). https://doi.org/10.1007/s12229-021-09258-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-021-09258-y

Keywords

Navigation