Skip to main content

Advertisement

Log in

Degradome and Secretome of Pollination Drops of Ephedra

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Although secreted proteins (a secretome) are known to occur in gymnosperm pollination drops, this study shows evidence for the presence of a protein degradome for the first time. A protein degradome is composed of protein and peptide fragments, a product of protein breakdown, whereas a secretome is composed of whole, secreted, and often biologically active extracellular proteins. Harvested Ephedra pollination drops from seven species were pooled either by collection date or, in the case of less abundant sample volumes, by species. Samples were processed by one of two methods: 1. gel electophoresis or by 2. liquid-liquid extraction, followed by chromatographic separation. Processed samples were trypsin-digested and analyzed with a Thermo Scientific LTQ Orbitrap Velos. On average, two-thirds of the detected and characterized proteins found in Ephedra spp. pollination drops were intracellular proteins, such as ubiquitin. The remaining third represent proteins known to be secreted, often involved in apoplastic processes such as defense and carbohydrate-modification, typical of known conifer pollination drop proteins. Characterized proteins detected in our comparative study of Ephedra spp drops ranged from 6 in E. monosperma to 20 in E. foeminea. We propose that the intracellular proteins detected are present as the result of nucellar tissue degeneration during pollination drop formation; previous proteomic investigations of pollination drops were in taxa that lack nucellar degeneration during drop formation Discovery of a degradome in pollination drops is novel and significant in that its presence has biological implications for pollination biology. We predict that degradomes in pollination drops are not restricted to Ephedra, but should also occur in species with nucellar tissue breakdown that coincides with pollination drop formation, such as in cycads and Ginkgo and some Pinaceae. Analysis of several collection dates of E. monosperma shows a large number of proteins that change over the course of the pollination drop secretion period, which suggests that variation in pollination drop contents over time may be important in the pollination biology of Ephdera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Literature Cited

  • Bino, R. J., N. Devente & A. D. J. Meeuse. 1984. Entomophily in the dioecious gymnosperm Ephedra aphylla Forsk (= E. alte C. A. Mey), with some notes on Ephedra campylopoda C. A. Mey.: II. Pollination droplets, nectaries, and nectarial secretion in Ephedra. Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen, Series C, Biological and Medical Sciences 87: 15–24.

    Google Scholar 

  • Birol, I., A. Raymond, S. D. Jackman, et al. 2013. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29: 1492–1497.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brewbaker, J. L. & B. H. Kwack. 1963. The essential role of calcium ion in pollen germination and pollen tube growth. American Journal of Botany 50: 859–865.

    Article  CAS  Google Scholar 

  • Brown, S. D. & F. E. Bridgewater. 1986. Observations on pollination in loblolly pine. Canadian Journal of Forest Research 17: 299–303.

    Article  Google Scholar 

  • Buchmann, S. L., M. K. O’Rourke & K. J. Niklas. 1989. Aerodynamics of Ephedra trifurca. 3. Selective pollen capture by pollination droplets. Botanical Gazette 150: 122–131.

    Article  Google Scholar 

  • Carafa, A. M., G. Carratu & P. Pizzolongo. 1992. Anatomical observations on the nucellar apex of Welwitschia mirabilis and the chemical composition of the micropylar drop. Sexual Plant Reproduction 5: 275–279.

    Article  Google Scholar 

  • Chandler, L. M. & J. N. Owens. 2004. The pollination mechanism of Abies amabilis. Canadian Journal of Forest Research 34: 1071–1080.

    Article  Google Scholar 

  • Coulter, A., B. A. D. Poulis & P. von Aderkas. 2012. Pollination drops as dynamic apoplastic secretions. Flora 207: 482–490.

    Article  Google Scholar 

  • Douglas, A. W., D. W. Stevenson & D. P. Little. 2007. Ovule development in Ginkgo biloba L., with emphasis on the collar and nucellus. International Journal of Plant Science 168: 1207–1236.

    Article  Google Scholar 

  • Doyle, J. 1945. Developmental lines in pollination mechanisms in the Coniferales. Scientific Proceedings of the Royal Dublin Society Series A 24: 43–62.

    Google Scholar 

  • Doyle, J. A. 2008. Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. International Journal of Plant Sciences 169: 816–843.

    Article  Google Scholar 

  • Duhoux, E. & A. T. Pham Thi. 1980. Influence de quelques acides aminés libres de l’ovule sur la croissance et le développement cellulaire in vitro du tube pollinique chez Juniperus communis (Cupressaceae). Physiologia Plantarum 50: 6–10.

    Article  CAS  Google Scholar 

  • Dumont-Béboux, N., B. Anholt & P. von Aderkas. 1999. In vitro Douglas fir pollen germination. Annales des Sciences Forestières 99: 11–18.

    Article  Google Scholar 

  • Dupler, A. W. 1920. Ovuliferous structures of Taxus canadensis. Botanical Gazette 69: 492–520.

    Article  Google Scholar 

  • El-Ghazaly, G., J. Rowley & M. Hesse. 1997. Polarity, aperture condition and germination in pollen grains of Ephedra (Gnetales). Plant Systematics and Evolution 213: 217–231.

    Article  Google Scholar 

  • Endress, P. 1996. Structure and function of female and bisexual organ complexes in Gnetales. International Journal of Plant Sciences 157(6 supplement): S113–S125.

    Article  Google Scholar 

  • Fujii, K. 1903. Über die Bestäubungstropfen der Gymnospermen. Berichte der Deutschen Botanischen Gesellschaft 21: 211–217.

    Google Scholar 

  • Gelbart, G. & P. von Aderkas. 2002. Ovular secretions as part of pollination mechanisms in conifers. Annals of Forest Science 59: 345–357.

    Article  Google Scholar 

  • Graham, S. W. & W. J. D. Iles. 2009. Different gymnosperm outgroups have (mostly) congruent signal regarding the root of flowering plant phylogeny. American Journal of Botany 96: 216–227.

    Article  PubMed  Google Scholar 

  • Greenwood, M. S. 1986. Gene exchange in loblolly pine: the relation between pollination mechanism, female receptivity and pollen availability. American Journal of Botany 73: 1443–1451.

    Article  Google Scholar 

  • Hawes, M. C., G. Curlando-Rivera, Z. Xiong & J. O. Kessler. 2012. Roles of border cells in plant defense and regulation of rhizosphere microbial populations by extracellular DNA ‘trapping’. Plant Soil 355: 1–16.

    Article  CAS  Google Scholar 

  • Heil, M. 2011. Nectar: generation, regulation and ecological functions. Trends in Plant Science 16: 191–199.

    Article  CAS  PubMed  Google Scholar 

  • Huesgen, P. I. & C. M. Overall. 2012. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification. Physiologia Plantarum 145: 5–17.

    Article  CAS  PubMed  Google Scholar 

  • Jin, B., L. Zhang, Y. Lu, D. Wang, X. X. Jiang, M. Zhang & L. Wang. 2012. The mechanism of pollination drop withdrawal in Ginkgo biloba L. Bio Med Central Plant Biology 2012, 12: 59. http://www.biomedcentral.com/1471-2229/12/59

  • Labandeira, C. C., J. Kvacek & M. B. Mostovski. 2007. Pollination drops, pollen, and insect pollination of Mesozoic gymnosperms. Taxon 56: 663–695.

    Article  Google Scholar 

  • Leslie, A. B. 2010. Flotation preferentially selects saccate pollen during conifer pollination. New Phytologist 188: 273–279.

    Article  PubMed  Google Scholar 

  • Linander, N., N. Hempel de Ibarra & M. Laska. 2012. Olfactory detectability of L-amino acids in the European honeybee (Apis mellifera). Chemical Senses 37: 631–638.

    Article  CAS  PubMed  Google Scholar 

  • Little, S. A., N. A. Prior, C. Pirone & P. von Aderkas. (2014). Pollen-ovule interactions in gymnosperms. In K. Ramawat & J. M. M. Merillon (eds.), Reproductive biology of plants. CRC Press, New York.

  • López-Ortín, C. & C. M. Overall. 2002. Protease degradomics: a new challenge for proteomics. Nature Reviews Molecular Cell Biology 3: 509–519.

    Article  Google Scholar 

  • Mathews, S. 2009. Phylogenetic relationships among seed plants: persistent questions and the limits of molecular data. American Journal of Botany 96: 228–236.

    Article  PubMed  Google Scholar 

  • Meeuse, A. D. J., A. H. de Meijer, O. W. P. Mohr & S. M. Wellinga. 1990. Entomophily in the dioecious gymnosperm E. aphylla Forsk. (= E. alte C. A. Mey) with some notes on E. campylopoda C. A. Mey. III. Further anthecological studies and relative importance of entomophily. Israel Journal of Botany 39: 113–123.

    Google Scholar 

  • Moussel, B. 1980. Gouttelette receptrice du pollen et pollinisation chez l’Ephedra distachya L.: observations sur le vivant et en microscopies photonique et electronique. Revue de Cytologie et de Biologie Végétales – le Botaniste 3: 65–89.

    Google Scholar 

  • Mugnaini, S., M. Nepi, M. Guarnieri, B. Piotto & E. Pacini. 2007. Pollination drop in Juniperus communis: Response to deposited material. Annals of Botany 100: 1475–1481.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nepi, M., P. von Aderkas, R. Wagner, S. Mugnaini, A. Coulter & E. Pacini. 2009. Nectar and pollination drops: how different are they? Annals of Botany 104: 205–219.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicolson, S. W. 2011. Bee food: the chemistry and nutritional value of nectar, pollen and mixtures of the two. African Zoology 46: 197–204.

    Article  Google Scholar 

  • Niklas, K. J. & V. Kerchner. 1986. Aerodynamics of Ephedra trifurca. 2. Computer modeling of pollination efficiencies. Journal of Mathematical Biology 24: 1–24.

    Article  Google Scholar 

  • ———, S. L. Buchmann & V. Kerchner. 1986. Aerodynamics of Ephedra trifurca. 1. Pollen grain velocity-fields around stems bearing ovules. American Journal of Botany 73: 966–979.

    Article  Google Scholar 

  • ———, & S. L. Buchmann. 1987. The aerodynamics of pollen capture in 2 sympatric Ephedra species. Evolution 41: 104–123.

  • Norstog, K. J. & T. J. Nicholls. 1997. The biology of the cycads. Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Nystedt, B., N. R. Street, A. Wetterborn, et al. 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497: 579–584.

    Article  CAS  PubMed  Google Scholar 

  • O’Leary, S. J. B., C. Joseph & P. von Aderkas. 2004. Origin of arabinogalactan proteins in the pollination drop of Taxus x media. Austrian Journal of Forest Science 121: 35–46.

    Google Scholar 

  • ———, B. A. D. Poulis & P. von Aderkas. 2007. The identification of two thaumatin-like proteins (TLPs) in the pollination drop of hybrid yew that may play a role in pathogen defense during pollen collection. Tree Physiology 27: 1649–1659.

  • Owens, J. N., S. J. Simpson & M. Molder. 1980. The pollination mechanism of Chamaecyparis nootkatensis. Canadian Journal of Forest Research 10: 564–572.

    Article  Google Scholar 

  • Porsch, O. 1910. Ephedra campylopoda CA Mey, eine entomophile Gymnosperme. Berichte der Deutschen Botanischen Gesellschaft 28: 404–412.

    Google Scholar 

  • Poulis, B. A. D., S. J. B. O’Leary, J. D. Haddow & P. von Aderkas. 2005. Identification of proteins present in the Douglas-fir ovular secretion: an insight into conifer pollen selection and development. International Journal of Plant Sciences 166: 733–739.

    Article  CAS  Google Scholar 

  • Prior, N. A., S. A. Little, C. Pirone, J. E. Gill, D. Smith, J. Han, D. Hardie, S. J. B. O’Leary, R. E. Wagner, T. Cross, A. Coulter, C. Borchers, R. W. Olafson & P. von Aderkas. 2013. Application of proteomics to the study of pollination drops. Applications in Plant Sciences. doi:10.3732/apps.1300008

  • Roberts, I. N., C. Caputo, M. V. Criado & C. Funk. 2012. Senescence-associated proteins in plants. Physiologia Plantarum 145: 130–139.

    Article  CAS  PubMed  Google Scholar 

  • Rothwell, G. W. 1977. Evidence for pollination-drop mechanism in Paleozoic pteridosperms. Science 198: 1251–1252.

    Article  CAS  PubMed  Google Scholar 

  • ——— & R. A. Stockey. 2013. Evolution and phylogeny of gnetophytes: evidence from the anatomically preserved seed cone Protoephridites eamesii sp. nov. and the seeds of several Bennettitalean seed. International Journal of Plant Sciences 174: 511–529.

    Article  Google Scholar 

  • Runions, C. J. & J. N. Owens. 1996. Pollen scavenging and rain involvement in the pollination mechanisms of interior spruce. Canadian Journal of Botany 74: 115–124.

    Article  Google Scholar 

  • Rydin, C. J. & P. Korall. 2009. Evolutionary relationships in Ephedra (Gnetales), with implications for seed plant phylogeny. International Journal of Plant Sciences 170: 1031–1043.

    Article  Google Scholar 

  • Rydin, C., A. Khodabandeh & P. K. Endress. 2010. The female reproductive unit of Ephedra (Gnetales): comparative morphology and evolutionary perspectives. Botanical Journal of the Linnean Society 163: 387–430.

    Article  PubMed  Google Scholar 

  • Schumann, K. 1903. Über die weiblichen Blüten der Coniferen. Verhandlungen des Botanischen Vereins für die Provinz Brandenburg 44: 23–42.

    Google Scholar 

  • Seridi-Benkaddour, R. & L. Chesnoy. 1988. Secretion and composition of the pollination drop in Cephalotaxus drupacea (Gymnosperm, Cephalotaxeae). Pp 345–350. In: M. Cresti, P. Gori, & E. Pacini (eds). Sexual Reproduction in Higher Plants. Springer, Berlin, Germany.

    Chapter  Google Scholar 

  • Singh, H. 1978. Embryology of gymnosperms. Gebrüder Borntraeger, Stuttgart, Berlin, Germany.

    Google Scholar 

  • Strasburger, E. 1871. Die Bestäubung der Gymnospermen. Jenaische Zeitschrift für Medizin und Naturwissenschaft 6: 249–262.

    Google Scholar 

  • Takaso, T. & J. N. Owens. 1995. Pollination drop and microdrop secretions in Cedrus. International Journal of Plant Sciences 156: 640–649.

    Article  Google Scholar 

  • Tison, P. A. 1911. Remarques sur les gouttelettes collectrices des ovules des conifères. Mémoires de la Société Linnéenne de Normandie 24: 51–66.

    Google Scholar 

  • Tomlinson, P. B. 2012. Rescuing Robert Brown - the origins of angio-ovuly in seed cones of conifers. Botanical Review 78: 310–334.

    Article  Google Scholar 

  • ———, J. E. Braggins & J. A. Rattenbury. 1997. Contrasted pollen capture mechanism in Phyllocladaceae and certain Podocarpaceae (Coniferales). American Journal of Botany 84: 214–223.

    Article  CAS  PubMed  Google Scholar 

  • Vaucher, J.-P. E. 1841. Histoire physiologique des plantes d’Europe, Vol. 4. Marc Aurel Frères, Paris.

    Google Scholar 

  • Villar, M., R. B. Knox & C. Dumas. 1984. Effective pollination period and nature of pollen-collecting apparatus in the Gymnosperm, Larix leptolepis. Annals of Botany 53: 279–284.

    Google Scholar 

  • von Aderkas, P., M. Nepi, M. Rise, F. Buffi, M. Guarnieri, A. Coulter, K. Gill, P. Lan, S. Rzemeniak & E. Pacini. 2012. Post-pollination prefertilization drops affect germination rates of heterospecifc pollen in larch and Douglas-fir. Sexual Plant Reproduction 25: 215–225.

    Article  Google Scholar 

  • Wagner, R. E., S. Mugnaini, R. Sniezko, D. Hardie, B. Poulis, M. Nepi, E. Pacini & P. von Aderkas. 2007. Proteomic evaluation of gymnosperm pollination drop proteins indicates highly conserved and complex biological functions. Sexual Plant Reproduction 20: 181–189.

    Article  CAS  Google Scholar 

  • Wen, F., R. Celoy, I. Price, J. J. Ebola & M. C. Hawes. 2008a. Identification and characterization of a rhizosphere β-galactosidase from Pisum sativum L. Plant Soil 304: 133–144.

    Article  CAS  Google Scholar 

  • ———, H. H. Woo, E. A. Pierson, T. Eldhuset, G. C. Fossdal, N. E. Nagy & M. C. Hawes. 2008b. Synchronous elicitation of development in root caps induces transient gene expression changes common to legume and gymnosperm species. Plant Molecular Biology Reports 27: 58–68.

  • Williams, J. H. 2012. Pollen tube growth rates and the diversification of flowering plant reproductive cycles. International Journal of Plant Sciences 173: 649–661.

    Article  Google Scholar 

  • Ziegler, H. 1959. Über die Zusammensetzung des Bestäubungstropfens und den Mechanismus seiner Secretion. Planta 52: 582–589.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank University of Victoria (UVic), UVic-Genome BC Proteomics Centre (UVic-GBCP), Genome Canada, and Genome BC for their support, as well as the Natural Sciences and Engineering Research Council of Canada (NSERC) for a Discovery Research Grant Program (PvA), and a Post-graduate Scholarship Program Grant (NAP). We acknowledge the expert assistance of B. Gowen (UVic), D. Smith (UVic) and Carol Parker (UVic-GBCP), as well as the invaluable assistance in sample collections from S. Ickert-Bond, C. Rydin, K. Bolinder, A. Rydberg, J. Jernstedt and I. Loera-Carrizales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick von Aderkas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Aderkas, P., Prior, N., Gagnon, S. et al. Degradome and Secretome of Pollination Drops of Ephedra . Bot. Rev. 81, 1–27 (2015). https://doi.org/10.1007/s12229-014-9147-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-014-9147-x

Keywords

Navigation