Skip to main content
Log in

Transcriptional analysis of genes encoding β-glucosidase of Schizophyllum commune KUC9397 under optimal conditions

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The present study was conducted to determine the gene responsible for beta-glucosidase (BGL) production and to generate a full-length complementary DNA (cDNA) of one of the putative BGL genes, which showed a significant expression level when Schizophyllum commune KUC9397 was grown in optimized medium. The relative expression levels of seven genes encoding BGL of S. commune KUC9397 were determined with real-time quantitative reverse transcription PCR in cellulose-containing optimized medium (OM) compared to glucose-containing basal medium (BM). The most abundant transcript was bgl3a in OM. The transcript number of the bgl3a increased more than 57.60-fold when S. commune KUC9397 was grown on cellulose-containing OM compared to that on glucose-containing BM. The bgl3a was identified, and a deduced amino acid sequence of bgl3a shared homology (97%) with GH3 BGL of S. commune H4-8. This is the first report showing the transcription levels of genes encoding BGL and identification of full-length cDNA of glycoside hydrolase 3 (GH3) BGL from S. commune. Furthermore, this study is one of the steps for consolidated bioprocessing of lignocellulosic biomass to bioethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amore A, Giacobbe S, Faraco V (2013) Regulation of cellulase and hemicellulase gene expression in fungi. Curr Genomics 14:230–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao W, Lymar E, Renganathan V (1994) Optimization of cellobiose dehydrogenase and β-glucosidase production by cellulose-degrading cultures of Phanerochaete chrysosporium. Appl Microbiol Biotechnol 42:642–646

    Article  CAS  Google Scholar 

  • Chen X, Luo Y, Yu H, Sun Y, Wu H, Song S, Hu S, Dong Z (2014) Transcriptional profiling of biomass degradation-related genes during Trichoderma reesei growth on different carbon sources. J Biotechnol 173:59–64

    Article  CAS  PubMed  Google Scholar 

  • Deshpande V, Eriksson KE, Pettersson B (1978) Production, purification and partial characterization of 1, 4-β-glucosidase enzymes from Sporotrichum pulverulentum. Eur J Biochem 90:191–198

    Article  CAS  PubMed  Google Scholar 

  • Dons JJM, De Vries OMH, Wessels JGH (1979) Characterization of the genome of the basidiomycete Schizophyllum commune. Biochim Biophys Acta 563:100–112

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Gao F, Jiang X, Zhang C, Zhang D, Wang L, Wu G, Chen S (2014) Biochemical characterization of a new β-glucosidase (Cel3E) from Penicillium piceum and its application in boosting lignocelluloses bioconversion and forming disaccharide inducers: new insights into the role of β-glucosidase. Process Biochem 49:768–774

    Article  CAS  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong J, Tamaki H, Kumagai H (2007) Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol 73:1331–1339

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen H, Mørkeberg A, Krogh KBR, Olsson L (2004) Growth and enzyme production by three Penicillium species on monosaccharides. J Biotechnol 109:295–299

    Article  PubMed  Google Scholar 

  • Krogh KB, Harris PV, Olsen CL, Johansen KS, Hojer-Pedersen J, Borjesson J, Olsson L (2010) Characterization and kinetic analysis of a thermostable GH3 beta-glucosidase from Penicillium brasilianum. Appl Microbiol Biotechnol 86:143–154

    Article  CAS  PubMed  Google Scholar 

  • Lee YM, Lee H, Kim JS, Lee J, Ahn BJ, Kim G-H, Kim J-J (2014) Optimization of medium components for β-glucosidase production of Schizophyllum commune KUC9397 and enzymatic hydrolysis of lignocellulosic biomass. Bioresources 9:4358–4368

    Google Scholar 

  • Li B, Renganathan V (1998) Gene cloning and characterization of a novel cellulose-binding β-glucosidase from Phanerochaete chrysosporium. Appl Environ Microbiol 64:2748–2754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lo AC, Barbier JR, Willick GE (1990) Kinetics and specificities of two closely related β-glucosidases secreted by Schizophyllum commune. Eur J Biochem 192:175–181

    Article  CAS  PubMed  Google Scholar 

  • Lo AC, Willick G, Bernier R, Desrochers M (1988) Purification and assay of beta-glucosidase from Schizophyllum commune. Methods Enzymol 160:432–437

    Article  CAS  Google Scholar 

  • Margolles-Clark E, Ilmén M, Penttilä M (1997) Expression patterns of ten hemicellulase genes of the filamentous fungus Trichoderma reesei on various carbon sources. J Biotechnol 57:167–179

    Article  CAS  Google Scholar 

  • Ohm RA, De Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP et al (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28:957–963

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MH, Gold MH (1979) Phanerochaete chrysosporium β-glucosidases: induction, cellular localization, and physical characterization. Appl Environ Microbiol 37:938–942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steenbakkers PJ, Harhangi HR, Bosscher MW, van der HOOFT MM, Keltjens JT, van der DRIFT C, Vogels GD (2003) β-glucosidase in cellulosome of the anaerobic fungus Piromyces sp. strain E2 is a family 3 glycoside hydrolase. Biochem J 370:963–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suto M, Tomita F (2001) Induction and catabolite repression mechanisms of cellulase in fungi. J Biosci Bioeng 92:305–311

    Article  CAS  PubMed  Google Scholar 

  • Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–263

    Article  CAS  Google Scholar 

  • Whitaker DR (1951) Studies in the biochemistry of cellulolytic microorganisms: I. Carbon balances of wood-rotting fungi in surface culture. Can J Bot 29:159–175

    Article  CAS  Google Scholar 

  • Willick GE, Morosoli R, Seligy VL, Yaguchi M, Desrochers M (1984) Extracellular proteins secreted by the basidiomycete Schizophyllum commune in response to carbon source. J Bacteriol 159:294–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong DW, Chan VJ, McCormack AA, Hirsch J, Biely P (2012) Functional cloning and expression of the Schizophyllum commune glucuronoyl esterase gene and characterization of the recombinant enzyme. Biotechnol Res Int 2012:1–7

    Article  Google Scholar 

  • Xu R, Teng F, Zhang C, Li D (2011) Cloning of a gene encoding β-glucosidase from Chaetomium thermophilum CT2 and its expression in Pichia pastoris. J Mol Microbiol Biotechnol 20:16–23

    Article  PubMed  Google Scholar 

  • Yoshida M, Igarashi K, Kawai R, Aida K, Samejima M (2004) Differential transcription of β-glucosidase and cellobiose dehydrogenase genes in cellulose degradation by the basidiomycete Phanerochaete chrysosporium. FEMS Microbiol Lett 235:177–182

    CAS  PubMed  Google Scholar 

  • Zhu N, Liu J, Yang J, Lin Y, Yang Y, Ji L, Li M, Yuan H (2016) Comparative analysis of the secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-state fermentation reveals its unique lignocellulose-degrading enzyme system. Biotechnol Biofuels 9:1

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a Korea University Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.M., Lee, H., Heo, Y.M. et al. Transcriptional analysis of genes encoding β-glucosidase of Schizophyllum commune KUC9397 under optimal conditions. Folia Microbiol 62, 191–196 (2017). https://doi.org/10.1007/s12223-016-0484-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-016-0484-5

Keywords

Navigation