Skip to main content
Log in

Investigating the Interlaminar Fracture Toughness of Glass Fiber/Epoxy Composites Modified by Polypropylene Spunbond Nonwoven Fabric Interlayers

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Nonwoven webs can be used as interleaves to improve the delamination resistance of fiber-reinforced composites. This paper addresses the flexural and interlaminar fracture behavior of glass fiber/epoxy composites with Spunbond polypropylene nonwoven interlayers. For this purpose, 7-layer hybrid composites were fabricated in intraply configuration using four layers of glass fabric and three interlayers of polypropylene spunbond nonwoven fabric. The effect of nonwoven fabric parameters, including areal weight densities [40, 50, 60, 70, and 90 GSM (g/m2)], and fabric orientation (longitudinal and cross direction) was investigated. The results of the three-point bending test showed that the nonwoven interlayer had a positive effect on the maximum flexural load and work of fracture. It caused an increase of approximately 163% in the maximum load of the sample, which had a nonwoven interlayer weight of 70 GSM compared with the non-hybrid glass sample. The glass fiber/epoxy composite was delaminated at lower strains than composites with polypropylene interlayer. The results showed that in hybrid samples, the presence of nonwoven interlayer led to increased Mode-II fracture toughness of composite (GIIC) by 44% and 56% in the samples which has the nonwoven interlayer weight of 90 and 50 GSM, respectively, compared to the non-hybrid glass fabric sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The research data are available from the corresponding author on reasonable request.

References

  1. D. Haber, SAE Tech. Pap. (2015). https://doi.org/10.4271/2015-36-0219

    Article  Google Scholar 

  2. J. Fan, J. Njuguna, Lightweight composite structures in transport (Elsevier, Oxford, 2016), pp.3–34

    Book  Google Scholar 

  3. G.W. Milton, The theory of composites, 1st edn. (University of Cambridge, Cambridge, 2002)

    Book  Google Scholar 

  4. Y. Swolfs, L. Gorbatikh, I. Verpoest, Compos. Part A Appl. Sci. Manuf. 67, 181 (2014)

    Article  CAS  Google Scholar 

  5. P.N.B. Reis, J.A.M. Ferreira, F.V. Antunes, J.D.M. Costa, Compos. Part A Appl. Sci. Manuf. 38, 1612 (2007)

    Article  Google Scholar 

  6. P. Davies, W.J. Cantwell, Composites 25, 869 (1994)

    Article  CAS  Google Scholar 

  7. M.J. Folkes, S.T. Hardwick, J. Mater. Sci. 25, 2598 (1990)

    Article  CAS  ADS  Google Scholar 

  8. J. Denk, Interlayer toughening of carbon fiber composites using nonwoven veils and multi-walled carbon nanotubes (California State University, California, 2020)

    Google Scholar 

  9. P.D.P. Jing Wang, C. Ma, G. Chen, Compos. Struct. 234, 111649 (2020)

    Article  Google Scholar 

  10. L.V. Guangchao, N. Zhang, M. Huang, C. Shena, J. Castroc, K. Tan, X. Liu, C. Liu, Polym. Test. 69, 470 (2018)

    Article  Google Scholar 

  11. A. Gheryani, D.C. Fleming, R.P. Reichard, J. Compos. Mater. 53, 4349 (2019)

    Article  CAS  ADS  Google Scholar 

  12. B. Beylergil, M. Tanoğlu, E. Aktaş, J. Compos. Mater. 54, 4173 (2020)

    Article  CAS  ADS  Google Scholar 

  13. B. Beylergil, M. Tanoğlu, E. Aktaş, Compos. Struct. 194, 21 (2018)

    Article  Google Scholar 

  14. A. Jabbar, A. Ahmad, M. Adnan, Y. Nawab, Z. Javed, M. Irfan, Appl. Polym. Sci. 138, 50683 (2021)

    Article  CAS  Google Scholar 

  15. P.K. Patnaik, P.T.R. Swain, S.K. Mishra, A. Purohit, S. Biswas, Mater. Today Proc. 26, 466 (2020)

    Article  CAS  Google Scholar 

  16. M. Epstein, R.L. Shishoo, J. Appl. Polym. Sci. 57, 751 (1995)

    Article  CAS  Google Scholar 

  17. S. Kobayashi, K.I. Suna, T. Yasuda, Adv. Compos. Mater. 21, 413 (2012)

    Article  CAS  Google Scholar 

  18. B. Beylergil, M. Tanoğlu, E. Aktas, Steel Compos. Struct. 31, 113 (2019)

    Google Scholar 

  19. B.D. Saz-Orozco, D. Ray, W.F. Stanley, Poly Comp. 38, 2501 (2017)

    Article  Google Scholar 

  20. M. Kuwata, P. Hogg, Compos. Part A Appl. Sci. Manuf. 42, 1551 (2011)

    Article  Google Scholar 

  21. P.K. Patnaik, S. Biswas, Int. J. Mater. Eng. Innov. 7, 200–218 (2016)

    Article  CAS  Google Scholar 

  22. P.K. Patnaik, S. Biswas, Adv. Polym. Technol. 37, 1764–1773 (2018)

    Article  CAS  Google Scholar 

  23. Sharma, A. Purohit, R. Nagar, A. Patnaik, In: Proceedings of TRIBOINDIA-2018 an international conference on tribology (2018).

  24. A. Sharma, A. Patnaik, Metal Polym. Matrix Compos. 70, 1284–1288 (2018)

    CAS  Google Scholar 

  25. P.D. Quan, U. Farooq, G. Zhao, C. Dransfeld, R. Alderliesten, Mater. Des. (2022). https://doi.org/10.1016/j.matdes.2022.110671

    Article  Google Scholar 

  26. G. Tanchis , Reference book of textile technologies-nonwovens, ACIMIT-Italy, 1st edn (2008)

  27. M.M.A. Allah, D.A. Hegazy, H. Alshahrani, T.A. Sebaey, M.A.A. El-baky, Fibers Polym. 24, 2877 (2023)

    Article  CAS  Google Scholar 

  28. H. Alshahrani, T.A. Sebaey, M.M. Awd Allah, M.A. Abd El-baky, J. Compos. Mater. 57(7), 1315–1330 (2023). https://doi.org/10.1177/00219983231155013

    Article  CAS  ADS  Google Scholar 

  29. ASTM, ASTM D7905/D7905M-14. American Society for Testing and Materials (2014)

  30. A. Ridruejo, C. González, J. Llorca, Int. J. Solids Struct. 48, 153 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hooshang Nosraty.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest and did not receive support from any organization for the submitted work. Also, the data that support the findings of this study are available from the corresponding author, upon reasonable request.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahmani, M., Nosraty, H., Mirdehghan, S.A. et al. Investigating the Interlaminar Fracture Toughness of Glass Fiber/Epoxy Composites Modified by Polypropylene Spunbond Nonwoven Fabric Interlayers. Fibers Polym 25, 1061–1073 (2024). https://doi.org/10.1007/s12221-023-00466-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00466-4

Keywords

Navigation