Skip to main content
Log in

Anti-ultraviolet Properties of Weft-Knitted Textile Composite Materials Based on Modified Aramid and UHMWPE Fabrics

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The amide bonds of aramid fibers’ prolonged exposure to sunlight leads to the aging of the fibers and poor UV resistance. However, in most of the current studies, the improvement of UV resistance is accompanied by damage to aramid fibers. Four different mass fractions of the silane coupling agent KH550 and anhydrous calcium chloride were used to modify the surface of aramid fibers followed by grafting of zinc oxide nanoparticles onto the aramid fibers. The results showed that the surface free energy increased by 43.61%, and the interfacial shear strength (IFSS) increased by 58.19% when the concentration of KH550 was 20%. The tensile, flexural, and compressive strengths of the composites were higher by 46.81%, 71.05%, and 78.05%, respectively, than those of the unmodified aramid composites. The results showed that the IFSS of the aramid fiber was 16.24% higher than that of AF-20% KH550. The increase could be attributed to the growth of ZnO nanoparticles. The retention rate of the tensile strength of the unmodified aramid fiber was as low as 81.99% after 128 h of UV irradiation, and the retention rate of the aramid fiber after the growth of ZnO nanoparticles was 98.11%. The tensile, flexural, and compressive strength retention rates of aramid composites recorded following the surface growth of nano-ZnO were 98.08%, 91.49%, and 89.56%, respectively, which were significantly higher than the values recorded for unmodified aramid composites (82.19%, 75.44%, and 76.75%, respectively). The growth of nano-ZnO improved the UV resistance of aramid composites and the mechanical properties of aramid composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data Availability Statement

The data supporting the conclusions of this article are available from the corresponding author on reasonable request.

References

  1. V.V. Prasad, S. Talupula, A review on reinforcement of basalt and aramid (Kevlar 129) fibers. Mater. Today Proc. 5(2), 5993–5998 (2018)

    Article  Google Scholar 

  2. D. Quan, J.L. Urdaniz, C. Rouge, A. Ivankovic, The enhancement of adhesively-bonded aerospace-grade composite joints using steel fibres. Compos. Struct. 198, 11–18 (2018)

    Article  Google Scholar 

  3. K. Bilisik, G. Erdogan, E. Sapanci, In-plane response of para-aramid/phenolic nanostitched and nanoprepreg 3D composites under tensile loading. Polym. Compos. 40(4), 1275–1286 (2019)

    Article  CAS  Google Scholar 

  4. B. Liu, R. Badcock, H. Shu, J. Fang, A superconducting induction motor with a high temperature superconducting armature: electromagnetic theory, design and analysis. Energies 11(4), 792 (2018)

    Article  Google Scholar 

  5. G. Yang, M. Park, S.J. Park, Recent progresses of fabrication and characterization of fibers-reinforced composites: a review. Compos. Commun. 14, 34–42 (2019)

    Article  Google Scholar 

  6. N. Raphael, K. Namratha, B.N. Chandrashekar, K.K. Sadasivuni, D. Ponnamma, A.S. Smitha, S. Krishnaveni, C. Cheng, K. Byrappa, Surface modification and grafting of carbon fibers: a route to better interface. Prog. Cryst. Growth Charact. Mater. 64(3), 75–101 (2018)

    Article  CAS  Google Scholar 

  7. W. Lertwassana, T. Parnklang, P. Mora, C. Jubsilp, S. Rimdusit, High performance aramid pulp/carbon fiber reinforced polybenzoxazine composites as friction materials. Compos. B Eng. 177(9), 107280 (2019)

    Article  CAS  Google Scholar 

  8. G.C. Qi, B.M. Zhang, S.Y. Du, Y.L. Yu, Estimation of aramid fiber/epoxy interfacial properties by fiber bundle tests and multiscale modeling considering the fiber skin/core structure. Compos. Struct. 167, 1–10 (2017)

    Article  Google Scholar 

  9. H. Sun, H.J. Kong, H.Q. Ding, Q. Xu, J. Zeng, F.Y. Jiang, M.H. Yu, Y.F. Zhang, Improving UV resistance of aramid fibers by simultaneously synthesizing TiO2 on their surfaces and in the interfaces between fibrils/microfibrils using supercritical carbon dioxide. Polymers 12(1), (2020). https://doi.org/10.3390/polym12010147

  10. M.Z. Li, K. Cheng, C.H. Wang, S.J. Lu, Functionalize aramid fibers with polydopamine to possess UV resistance. J. Inorg. Organomet. Polym. Mater. 31(7), 2791–2805 (2021)

    Article  CAS  Google Scholar 

  11. 魏枫, 徐海兵, 颜春, 刘东, 欧阳少波, 裴勇勇, 祝颖丹. 芳香族聚酰胺纤维抗紫外老化的研究进展. 复合材料科学与工程 0(6), 115–21 (2022)

  12. S. Li, A. Gu, G. Liang, L. Yuan, J. Xue, A facile and green preparation of poly (glycidyl methacrylate) coated aramide fibers. J. Mater. Chem. 122, 8960–8968 (2012)

    Article  Google Scholar 

  13. V. Vilay, M. Mariatti, R. Mat Taib, M. Todo, Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber–reinforced unsaturated polyester composites. Compos. Sci. Technol. 68, 631–638 (2008)

    Article  CAS  Google Scholar 

  14. J. Lin, Effect of surface modification by bromination and metalation on Kevlar fibre-epoxy adhesion. Eur. Polym. J. 38(1), 79–86 (2002)

    Article  CAS  Google Scholar 

  15. T. Liu, Y. Zheng, J. Hu, Surface modification of aramid fibers with new chemical method for improving interfacial bonding strength with epoxy resin. J. Appl. Polym. Sci. 118(5), 2541–2552 (2010)

    Article  CAS  Google Scholar 

  16. G.J. Ehlert, Y. Lin, H.A. Sodano, Carboxyl functionalization of carbon fibers through a grafting reaction that preserves fiber tensile strength. Carbon 49(13), 4246–4255 (2011)

    Article  CAS  Google Scholar 

  17. G.S. Sheu, S.S. Shyu, Surface properties and interfacial adhesion studies of aramid fibres modified by gas plasmas. Compos. Sci. Technol. 52(4), 489–497 (1994)

    Article  CAS  Google Scholar 

  18. Y. Zhang, Z. Jiang, Y. Huang, Q. Li, The modification of Kevlar fibers in coupling agents by γ-ray co-irradiation. Fibers Polym. 12(8), 1014–1020 (2011)

    Article  CAS  Google Scholar 

  19. M. Andideh, M. Esfandeh, Effect of surface modification of electrochemically oxidized carbon fibers by grafting hydroxyl and amine functionalized hyperbranched polyurethanes on interlaminar shear strength of epoxy composites. Carbon 123, 233–242 (2017)

    Article  CAS  Google Scholar 

  20. L.W. Zhang, H.J. Kong, M.M. Qiao, X.M. Ding, M.H. Yu, Supercritical CO2-induced nondestructive coordination between ZnO nanoparticles and aramid fiber with highly improved interfacial-adhesion properties and UV resistance. Appl. Surf. Sci. 521, (2020). https://doi.org/10.1016/j.apsusc.2020.146430

  21. C.Y. Li, J.J. Song, W.J. Xing, L.X. Wang, Y.Y. Cui, X.Y. Pei, Mechanical properties of interlayer hybrid textile composite materials based on modified aramid and UHMWPE fabrics. Polym. Adv. Technol. 34(1), 205–216 (2023)

    Article  Google Scholar 

  22. L.X. Ma, J.W. Zhang, C.Q. Teng, Covalent functionalization of aramid fibers with zinc oxide nano-interphase for improved UV resistance and interfacial strength in composites. Compos. Sci. Technol. 188, (2020). https://doi.org/10.1016/j.apsusc.2020.146430

  23. 管宇, 冒亚红. 八聚(γ-氨丙基)倍半硅氧烷对芳纶纤维的抗紫外接枝改性. 纺织科学与工程学报 35(01), 46–55 (2018)

  24. A. Xie, Z. Zhang, B. Gu, G. Yang, D. Tao, S. Weng, J. Mater. Sci. Lett. 21, 345 (2002)

    Article  CAS  Google Scholar 

  25. Z. Jin, Z. Luo, S. Yang, S. Lu, J. Appl. Polym. Sci. 132, n/a (2015)

  26. R. Sa, Y. Yan, Z. Wei, L. Zhang, W. Wang, M. Tian, A.C.S. Appl, Mater. Interfaces 6, 21730 (2014)

    Article  CAS  Google Scholar 

  27. H. Awais, Y. Nawab, A. Anjang et al., Effect of fabric architecture on the shear and impact properties of natural fibre reinforced composites. Compos. Part B Eng. 195, (2020). https://doi.org/10.1016/j.compositesb.2020.108069

  28. S.D. Pandita, D. Falconet, I. Verpoest, Impact properties of weft knitted fabric reinforced composites. Compos. Sci. Technol. 62(7–8), 1113–1123 (2002)

    Article  Google Scholar 

  29. J. Tian, L.Z. An, Y.F. Tan, T. Xu, X.T. Li, G.X. Chen, Graphene oxide-modified aramid fibers for reinforcing epoxy resin matrixes. ACS Appl. Nano Mater. 4(9), 9595–9605 (2021)

    Article  CAS  Google Scholar 

  30. 向坤, 李扬, 陆轴, 周筑文, 熊德永, 罗筑. 低温等离子体处理芳纶复合材料界面性能研究进展. 工程塑料应用 48(06), 145–149 (2020)

  31. GB/T 19975–2005, 高强化纤长丝拉伸性能试验方法[s]

  32. C.Y. Li, Y.Y. Cui, W.J. Xing, X.Y. Pei, J.J. Song, L.X. Wang, Secondary silane grafting on aramid fibers improves the interfacial bonding performance in textile composite materials. J. Compos. Mater. 56(29), 4421–4432 (2022)

    Article  CAS  ADS  Google Scholar 

  33. GB/T 1447-2005, 纤维增强塑料拉伸性能试验方法[S]

  34. GB/T 1449-2005, 纤维增强塑料弯曲性能试验方法[S]

  35. GB/T 1448-2005, 纤维增强塑料压缩性能试验方法[S]

  36. A. Nejman, I. Kaminska, I. Jasinska, G. Celichowski, M. Cieslak, Influence of low-pressure RF plasma treatment on aramid yarns properties. Molecules 25(15), (2020). https://doi.org/10.3390/molecules25153476

  37. R.N. Sa, Y. Yan, Z.H. Wei, L.Q. Zhang, W.C. Wang, M. Tian, Surface modification of aramid fibers by bio-inspired poly(dopamine) and epoxy functionalized silane grafting. ACS Appl. Mater. Interfaces 6(23), 21730–21738 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. C.T. Li, N. Wu, M. Zhang, C.H. Wei, F. Yan, Z.H. Wang, Effects of E44 and KH560 modifiers on properties of distillers grains poly(butylene succinate) composites. Polym. Compos. 40(4), 1499–1509 (2019)

    Article  Google Scholar 

  39. R. Yang, Y. Li, J. Yu, Photo-stabilization of linear low density polyethylene by inorganic nano-particles. Polym. Degrad. Stab. 88(2), 168–174 (2005)

    Article  CAS  Google Scholar 

  40. H.X. Zhao, R.K.Y. Li, A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites. Polymer 47(9), 3207–3217 (2006)

    Article  CAS  Google Scholar 

  41. Z.W. Xu, L. Chen, Y.D. Huang, J.L. Li, X.Q. Wu, X.M. Li, Y.N. Jiao, Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy. Eur. Polym. J. 44(2), 494–503 (2008)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant nos. 51403154; 11602168).

Author information

Authors and Affiliations

Authors

Contributions

CL: provision of study materials and revised the manuscript; JS: writing the initial draft, conducted the trials and analyzing data; YC and MS: assisted JS with trials. CF and LZ: checking the details of the manuscript and helping JS to revise it. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cuiyu Li.

Ethics declarations

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Shan, J., Cui, Y. et al. Anti-ultraviolet Properties of Weft-Knitted Textile Composite Materials Based on Modified Aramid and UHMWPE Fabrics. Fibers Polym 25, 631–649 (2024). https://doi.org/10.1007/s12221-023-00396-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00396-1

Keywords

Navigation