Skip to main content
Log in

Preparation and Characterization of Electrospun Mat of Ultra-high Molecular Weight Polyethylene/High-Density Polyethylene Blends

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Ultra-high molecular weight polyethylene (UHMWPE) acquires excellent properties while possessing poor processability. Blending low molecular weight polyethylene disentangles the molecular chain of UHMWPE and improves its processability, improving fiber productivity. In the present study, UHMWPE and its HDPE-blended fibers were produced by a high-temperature electrospinning process, and the effect of HDPE content on fiber properties was investigated in depth. Analysis of fiber surface morphology revealed the formation of uniformly distributed nano- to microscopic pores/pits, wrinkles, and grooves on the surface of blended fibers, unlike neat UHMWPE fibers containing irregular surface bulges and pits. It suggested that the blending of HDPE affected the surface topography and the thermal and mechanical properties of electrospun fibers. The tensile strength and Young’s modulus of UHMWPE fiber improved by 142 and 102% at a 67:33 mass ratio of UHMWPE and HDPE and by 84 and 132% in the case of a 50:50 composition ratio, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of thdoneis study are available from the corresponding author upon reasonable request.

Data Transparency

Authors will ensure all data transparency.

References

  1. H.X. Wang, P.J. Hazell, K. Shankar, E.V. Morozov, J.P. Escobedo, The effectiveness of combined gripping method in tensile testing of UHMWPE single yarn. Conf. Ser. Mater. Sci. Eng Iop (2015). https://doi.org/10.1088/1757-899X/87/1/012109

    Article  Google Scholar 

  2. P. Smith, P.J. Lemstra, Ultra-high-strength polyethylene filaments by solution spinning/drawing. J. Mater. Sci. 15, 505–514 (1980). https://doi.org/10.1007/BF02396802

    Article  CAS  Google Scholar 

  3. P. Nayak, A.K. Ghosh, N. Bhatnagar, Study of dynamic compressive responses of ultra-high molecular weight polyethylene felt impregnated with shear thickening fluid. Polym. Compos. (2021). https://doi.org/10.1002/pc.26335

    Article  Google Scholar 

  4. Y. Cai, Q. Wei, F. Huang, Processing of composite functional nanofibers. Woodhead Publ Ltd (2012). https://doi.org/10.1533/9780857095640.1.38

    Article  Google Scholar 

  5. R.V. Gundloori, A. Singam, N. Killi, Nanobased intravenous and transdermal drug delivery systems, in Applications of targeted nano drugs and delivery systems. ed. by R.V. Gundloori (Elsevier Inc, USA, 2019)

    Google Scholar 

  6. I.C. Um, D. Fang, B.S. Hsiao, A. Okamoto, B. Chu, Electro-spinning and electro-blowing of hyaluronic acid. Biomacromol 5, 1428–1436 (2004)

    Article  CAS  Google Scholar 

  7. S.Y. Gu, Q.L. Wu, J. Ren, G.J. Vancso, Mechanical properties of a single electrospun fiber and its structures. Macromol. Rapid Commun. 26, 716–720 (2005). https://doi.org/10.1002/marc.200400667

    Article  CAS  Google Scholar 

  8. M. Forouharshad, O. Saligheh, R. Arasteh, R.E. Farsani, Manufacture and characterization of poly (butylene terephthalate) nanofibers by electrospinning. J. Macromol. Sci. Part B Phys. 49, 833–842 (2010). https://doi.org/10.1080/00222341003609377

    Article  CAS  Google Scholar 

  9. Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253 (2003). https://doi.org/10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  10. R. Nayak, R. Padhye, L. Arnold, Melt-electrospinning of nanofibers. Elsevier Ltd. (2017). https://doi.org/10.1016/B978-0-08-100907-9.00002-7

    Article  Google Scholar 

  11. R. Casasola, N.L. Thomas, A. Trybala, S. Georgiadou, Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer (Guildf). 55, 4728–4737 (2014). https://doi.org/10.1016/j.polymer.2014.06.032

    Article  CAS  Google Scholar 

  12. X. Shi, W. Zhou, D. Ma, Q. Ma, D. Bridges, Y. Ma, A. Hu, Electrospinning of nanofibers and their applications for energy devices. J. Nanomater. 2015, 20 (2015). https://doi.org/10.1155/2015/140716

    Article  CAS  Google Scholar 

  13. T. Subbiah, G.S. Bhat, R.W. Tock, S. Parameswaran, S.S. Ramkumar, Electrospinning of nanofibers. J. Appl. Polym. Sci. 96, 557–569 (2005). https://doi.org/10.1002/app.21481

    Article  CAS  Google Scholar 

  14. S. Ramakrishna, K. Fujihara, W.E. Teo, T. Yong, Z. Ma, R. Ramaseshan, Electrospun nanofibers: solving global issues. Mater. Today. 9, 40–50 (2006). https://doi.org/10.1016/S1369-7021(06)71389-X

    Article  CAS  Google Scholar 

  15. K. Molnar, L.M. Vas, T. Czigany, Determination of tensile strength of electrospun single nanofibers through modeling tensile behavior of the nanofibrous mat. Compos. Part B Eng. 43, 15–21 (2012). https://doi.org/10.1016/j.compositesb.2011.04.024

    Article  CAS  Google Scholar 

  16. J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C. Beck Tan, The effect of processing variables on the morphology of electrospun. Polymer 42, 261–272 (2001)

    Article  CAS  Google Scholar 

  17. C. Zhang, T. Zhai, L.S. Turng, Electrospinning of poly(lactic acid)/polycaprolactone blends: Investigation of the governing parameters and biocompatibility. J. Polym. Eng. 38, 409–417 (2018). https://doi.org/10.1515/polyeng-2017-0194

    Article  CAS  Google Scholar 

  18. B.K. Tarus, N. Fadel, A. Al-Oufy, M. El-Messiry, Investigation of mechanical properties of electrospun poly (vinyl chloride) polymer nanoengineered composite. J. Eng. Fiber. Fabr. (2020). https://doi.org/10.1177/1558925020982569

    Article  Google Scholar 

  19. P. Chavoshnejad, O. Alsmairat, C. Ke, M.J. Razavi, Effect of interfiber bonding on the rupture of electrospun fibrous mats. J. Phys. D. Appl. Phys. 54, 025302 (2021). https://doi.org/10.1088/1361-6463/abba95

    Article  CAS  Google Scholar 

  20. A.M. Azam, A. Ali, H. Khan, T. Yasin, M.S. Mehmood, Analysis of degradation in UHMWPE a comparative study among the various commercial and laboratory grades UHMWPE. IOP Conf. Ser. Mater. Sci. Eng. 146, 012025 (2016). https://doi.org/10.1088/1757-899X/146/1/012025

    Article  Google Scholar 

  21. Y. Li, H. He, Y. Ma, Y. Geng, J. Tan, Rheological and mechanical properties of ultrahigh molecular weight polyethylene/high density polyethylene/polyethylene glycol blends. Adv. Ind. Eng. Polym. Res. 2, 51–60 (2019). https://doi.org/10.1016/j.aiepr.2018.08.004

    Article  Google Scholar 

  22. M. Hussain, R.A. Naqvi, N. Abbas, S.M. Khan, S. Nawaz, A. Hussain, N. Zahra, M.W. Khalid, Ultra-high-molecular-weight-polyethylene (UHMWPE) as a promising polymer material for biomedical applications: a concise review. Polymers (Basel). 12, 1–28 (2020). https://doi.org/10.3390/polym12020323

    Article  CAS  Google Scholar 

  23. C.R. Silva, R.M. Lago, H.S. Veloso, P.S.O. Patricio, Use of amphiphilic composites based on clay/carbon nanofibers as fillers in UHMWPE. J. Braz. Chem. Soc. 29, 278–284 (2018). https://doi.org/10.21577/0103-5053.20170138

    Article  CAS  Google Scholar 

  24. F. Wang, L. Liu, P. Xue, M. Jia, Crystal structure evolution of UHMWPE/HDPE blend fibers prepared by melt spinning. Polymers (Basel). 9, 96 (2017). https://doi.org/10.3390/polym9030096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. G. Shi, Z. Cao, X. Yan, Q. Wang, In-situ fabrication of a UHMWPE nanocomposite reinforced by SiO2 nanospheres and its tribological performance. Mater. Chem. Phys. 236, 121778 (2019). https://doi.org/10.1016/j.matchemphys.2019.121778

    Article  CAS  Google Scholar 

  26. H. Shen, L. He, C. Fan, B. Xie, W. Yang, M. Yang, Effective dissolution of UHMWPE in HDPE improved by high temperature melting and subsequent shear. Polym. Eng. Sci. 55, 270–276 (2015). https://doi.org/10.1002/pen.23898

    Article  CAS  Google Scholar 

  27. S.S. Khasraghi, M. Rezaei, Preparation and characterization of UHMWPE/HDPE/MWCNT melt-blended nanocomposites. J. Thermoplast. Compos. Mater. 28, 305–326 (2015). https://doi.org/10.1177/0892705713484745

    Article  CAS  Google Scholar 

  28. K. Ravi, Y. Ichikawa, T. Deplancke, K. Ogawa, O. Lame, J.Y. Cavaille, Development of ultra-high molecular weight polyethylene (UHMWPE) coating by cold spray technique. J. Therm. Spray Technol. 24, 1015–1025 (2015). https://doi.org/10.1007/s11666-015-0276-5

    Article  CAS  Google Scholar 

  29. W. Yang, Y. Bin, H. Wang, Z. Ge, Rheological properties of UHMWPE/HDPE blend gels and morphology and mechanical properties of gel-spun fibers. Polym. Eng. Sci. 61, 2127–2136 (2021). https://doi.org/10.1002/pen.25740

    Article  CAS  Google Scholar 

  30. J.K. Keum, F. Zuo, B.S. Hsiao, Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends. Macromolecules 41, 4766–4776 (2008). https://doi.org/10.1021/ma800063e

    Article  CAS  Google Scholar 

  31. P. Nayak, A.K. Ghosh, N. Bhatnagar, Investigation of Solution Rheology in Electrospinning of Ultra High Molecular Weight Polyethylene. Fibers Polym. (2021). https://doi.org/10.1007/s12221-021-0374-6

    Article  Google Scholar 

  32. T.J. Sill, H.A. von Recum, Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29, 1989–2006 (2008). https://doi.org/10.1016/j.biomaterials.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  33. Y.C. Zeng, Z.G. Pei, X.H. Wang, Numerical simulation of whipping process in electrospinning, Proc. 8th Wseas Int. Conf. Appl. Comput. Appl. Comput. Sci. 2, 309–317 (2009)

    Google Scholar 

  34. M.A. Ghalia, Y. Dahman, Advanced nanobiomaterials in tissue engineering: Synthesis, properties, and applications, in Advanced nanobiomaterials in tissue engineering. ed. by M.A. Ghalia (Elsevier Inc, USA, 2016)

    Chapter  Google Scholar 

  35. H. Tang, B. Yi, X. Wang, Y. Shen, Y. Zhang, Understanding the cellular responses based on low-density electrospun fiber networks. Mater. Sci. Eng. C. 119, 111470 (2021). https://doi.org/10.1016/j.msec.2020.111470

    Article  CAS  Google Scholar 

  36. Y. Tang, R. Yang, Z. Du, F. Zeng, Experimental study of formation damage caused by complete water vaporization and salt precipitation in sandstone reservoirs. Transp. Porous Media. 107, 205–218 (2015). https://doi.org/10.1007/s11242-014-0433-1

    Article  CAS  Google Scholar 

  37. D. Li, M.W. Frey, Y.L. Joo, Characterization of nanofibrous membranes with capillary flow porometry. J. Memb. Sci. 286, 104–114 (2006). https://doi.org/10.1016/j.memsci.2006.09.020

    Article  CAS  Google Scholar 

  38. J.M. Ameer, P.R. Anil Kumar, N. Kasoju, Strategies to tune electrospun scaffold porosity for effective cell response in tissue engineering. J. Funct. Biomater. 10, 1–21 (2019). https://doi.org/10.3390/jfb10030030

    Article  CAS  Google Scholar 

  39. M. Ahmad, M.U. Wahit, M.R.A. Kadir, K.Z.M. Dahlan, M. Jawaid, Thermal and mechanical properties of ultrahigh molecular weight polyethylene/high-density polyethylene/polyethylene glycol blends. J. Polym. Eng. 33, 599–614 (2013). https://doi.org/10.1515/polyeng-2012-0142

    Article  CAS  Google Scholar 

  40. H. Zhang, Y. Liang, Extrusion Processing of Ultra-High Molecular Weight Polyethylene. Extrus. Met. Polym. Food Prod. (2018). https://doi.org/10.5772/intechopen.72212

    Article  Google Scholar 

  41. A. De, A. Lucas, J.D. Ambrósio, H. Otaguro, L.C. Costa, J.A.M. Agnelli, Abrasive wear of HDPE/UHMWPE blends. Wear 270, 576–583 (2011). https://doi.org/10.1016/j.wear.2011.01.011

    Article  CAS  Google Scholar 

  42. J.M. Sustaita-Rodríguez, F.J. Medellín-Rodríguez, D.C. Olvera-Mendez, A.J. Gimenez, G. Luna-Barcenas, Thermal stability and early degradation mechanisms of high-density polyethylene, polyamide 6 (Nylon 6), and polyethylene terephthalate. Polym. Eng. Sci. 59, 2016–2023 (2019). https://doi.org/10.1002/pen.25201

    Article  CAS  Google Scholar 

  43. J. Diani, K. Gall, Finite Strain 3D thermoviscoelastic constitutive model. Society. (2006). https://doi.org/10.1002/pen

    Article  Google Scholar 

  44. P. Nayak, A.K. Ghosh, N. Bhatnagar, Enhancement of electrospun UHMWPE fiber performance through post-processing treatment. J. Appl. Polym. Sci. 140, e54221 (2023). https://doi.org/10.1002/app.54221

    Article  CAS  Google Scholar 

  45. K.L.K. Lim, Z.A.M. Ishak, U.S. Ishiaku, A.M.Y. Fuad, A.H. Yusof, T. Czigany, B. Pukanszky, D.S. Ogunniyi, High-density polyethylene/ultrahigh-molecular-weight polyethylene blend. I. The processing, thermal, and mechanical properties. J. Appl. Polym. Sci. 97, 413–425 (2005). https://doi.org/10.1002/app.21298

    Article  CAS  Google Scholar 

  46. T.U. Rashid, R.E. Gorga, W.E. Krause, Mechanical properties of electrospun fibers a critical review. Adv. Eng. Mater. (2021). https://doi.org/10.1002/adem.202100153

    Article  Google Scholar 

  47. R. Erdem, I. Usta, M. Akalin, O. Atak, M. Yuksek, A. Pars, The impact of solvent type and mixing ratios of solvents on the properties of polyurethane based electrospun nanofibers. Appl. Surf. Sci. 334, 227–230 (2015). https://doi.org/10.1016/j.apsusc.2014.10.123

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received to conduct this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript.

Corresponding author

Correspondence to Naresh Bhatnagar.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.The authors declare the following financial interests/personal relationships which may be considered as potential competing interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, P., Ghosh, A.K. & Bhatnagar, N. Preparation and Characterization of Electrospun Mat of Ultra-high Molecular Weight Polyethylene/High-Density Polyethylene Blends. Fibers Polym 24, 3421–3433 (2023). https://doi.org/10.1007/s12221-023-00286-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00286-6

Keywords

Navigation