Skip to main content
Log in

Bacterial Cellulose Production by Komagataeibacter xylinus Using Rice-washed Water and Tofu Processing Wastewater with the Addition of Sodium Glutamate

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Various industrial and agricultural waste have been using for bacterial cellulose (BC) production. This study aims to apply the rice-washed water and tofu processing wastewater as a growth medium to synthesize BC replacing Hestrin-Schramm (HS) medium by Komagataeibacter xylinus with the addition of sodium glutamate. The fermentation was carried out under static conditions for 5, 10, and 15 days at room temperature. The characteristics of BC were analyzed by SEM, XRD, and UTM for mechanical properties, whereas the yield was calculated from the dry weight. SEM images confirmed the formation of dense rod-shaped nanofibers configuration, and X-ray diffraction analysis revealed that BC had a typical crystalline form of the cellulose Iα. The yield from rice-washed water (RW) and tofu processing wastewater (TW) was slightly higher than from the HS medium. The highest yield of BC from RW, TW, and HS medium on the day 15 was 2.63 g/l, 3.80 g/l, and 2.55 g/l, respectively. Therefore, rice-washed water and tofu processing wastewater can use as a replacement for the role of Hestrin-Schraam (HS) medium. The yield increased when the medium was enriched with 1 % (w/v) sodium glutamate, became 4.47 g/l, 4.63 g/l, and 3.37 g/l for RW, TW, and HS, correspondingly. However, the addition of sodium glutamate lowered the tensile strength, Young’s modulus, and crystallinity. Both liquid wastewaters are considered as low-cost and sustainable alternative resources for BC production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. J. Vandamme, S. De Baets, A. Vanbaelen, K. Joris, and P. De Wulf, Polym. Degrad. Stab., 59, 93 (1998).

    Article  CAS  Google Scholar 

  2. S. M. A. S. Keshk and K. Sameshima, African J. Biotechnol., 4, 478 (2005).

    CAS  Google Scholar 

  3. S. M. Yim, J. E. Song, and H. R. Kim, Process Biochem., 59, 26 (2017).

    Article  CAS  Google Scholar 

  4. N. Tahara, M. Tabuchi, K. Watanabe, H. Yano, F. Yoshinaga, and N. Tahara, Biosci. Biotechnol. Biochem., 61, 1862 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Y. Nishi, M. Uryu, S. Yamanaka, K. Watanabe, N. Kitabura, M. Iguchi, and S. Mitsuhashi, J. Mater. Sci., 25, 2997 (1990).

    Article  CAS  Google Scholar 

  6. R. Yudianti and L. Indrarti, J. Appl. Sci., 8, 177 (2008).

    Article  CAS  Google Scholar 

  7. H. Jung, J. Jeong, O. Lee, G. Park, K. Kim, H. Park, S. Lee, Y. Kim, and H. Son, Bioresour. Technol., 101, 3602 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. S. Vitta and V. Thiruvengadam, Curr. Sci., 102, 1398 (2012).

    CAS  Google Scholar 

  9. D. Klemm, D. Schumann, F. Kramer, N. Heßler, M. Hornung, S. Marsch, K. Gesichtschirurgie, P. Chirurgie, F. Jena, and E. Allee, Adv. Polym. Sci., 205, 49 (2006).

    Article  CAS  Google Scholar 

  10. D. Zmejkoski, D. Spasojević, I. Orlovska, N. Kozyrovska, M. Soković, J. Glamočlija, S. Dmitrović, B. Matović, N. Tasić, V. Maksimović, M. Sosnin, and K. Radotić, Int. J. Biol. Macromol., 118, 494 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. A. N. Frone, D. M. Panaitescu, C. Andi, A. R. Gabor, R. Trusca, A. Casarica, P. O. Stanescu, D. D. Baciu, and A. Salageanu, Mater. Sci. Eng. C, 110, 110740 (2020).

    Article  CAS  Google Scholar 

  12. B. S. Inoue, S. Streit, A. L. dos Santos, Schneider, and M. M. Meier, Int. J. Biol. Macromol., 148, 1098 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. S. Pirsa and T. Shamusi, Mater. Sci. Eng. C, 102, 789 (2019).

    Article  CAS  Google Scholar 

  14. D. Li, X. Ning, Y. Yuan, Y. Hong, and J. Zhang, J. Environ. Sci., 91, 62 (2020).

    Article  Google Scholar 

  15. C. Huang, H. Ji, Y. Yang, B. Guo, and J. Xu, Carbohydr. Polym., 230, 115570 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. S. K. Sathish and S. Vitta, Encyclopedia of Renewable and Sustainable Materials, 3, 16 (2020).

    Article  Google Scholar 

  17. M. Schramm and S. Hestrin, J. Genet. Microbiol., 11, 123 (1954).

    Article  CAS  Google Scholar 

  18. F. P. Gomes, N. H. Silva, E. Trovatti, L. S. Serafim, M. F. Fuarte, A. J. SIlvestre, C. P. Neto, and C. S. Freira, Biomass and Bioenergy, 55, 205 (2013).

    Article  CAS  Google Scholar 

  19. R. Du, F. Zhao, Q. Peng, Z. Zhou, and Y. Han, Carbohydr. Polym., 194, 200 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. J. Ye, S. Zheng, Z. Zhang, F. Yang, K. Ma, Y. Feng, and J. Zheng, Bioresour Technol., 274, 518 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. V. Kumar, D. K. Sharma, V. Bansal, D. Mehta, R. S. Sangwan, and S. K. Yadav, Bioresour. Technol., 275, 430 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. M. Salari, M. Sowti, R. Rezaei, B. Ghanbarzadeh, and H. Samadi, Int. J. Biol. Macromol., 122, 280 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Y. Xie, X. Niu, J. Yang, R. Fan, and J. Shi, Int. J. Biol. Macromol., 150, 480 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. REEEP Organization, Tofu Production: A Massive Opportunity for RE Biogas in Indonesia, https://www.reeep.org/news/tofu-production-massive-opportunity-re-biogas-indonesia (Accessed October 23, 2021).

  25. M. Faisal, A. Gani, F. Mulana, and H. Daimon, Asian J. Chem., 3, 501 (2016).

    Article  CAS  Google Scholar 

  26. FAO, Crops Processed and Livestock Products, https://www.fao.org/faostat/en/#data (Accessed August 17, 2021).

  27. A. Y. Apriyana, D. Andriani, and M. Karina, “Production of Bacterial Cellulose from Tofu Liquid Waste and Rice-washed Water: Morphological Property and its Functional Groups Analysis”, p.012005, The 4th International Symposium on Green Technology for Value Chains 2019, 2019.

  28. W. Widayat, J. Plilia, and J. Wibisono, “Liquid Waste Processing of Tofu Industry for Biomass Production as Raw Material Biodiesel Production,” p.248, International Conference on SMART CITY Innovation 2018, 2019.

  29. A. Noviyanty and C. A. Salingkat, Agric. Sci. J., 5, 74 (2019).

    Google Scholar 

  30. Z. Kazmi, I. Fatima, S. Perveen, and S. Shakil, Int. J. Food Prop., 20, 1807 (2017).

    CAS  Google Scholar 

  31. G. Hanrahan and G. Chan, “Encyclopedia of Analytical Science”, 2nd ed. (P. Worsfold, A. Townshend, and C. Poole Eds.), pp.191–196, Elsevier, 2005.

  32. K. Izawa, Y. Amino, M. Kohmura, Y. Ueda, and M. Kuroda, “Human-Environment Interactions-Taste”, pp.631–671, Comprehensive Natural Products II: Chemistry and Biology, 2010.

  33. S. Jirasatid, K. Limroongreungrat, and M. Nopharatana, Int. Food Res. J., 26, 1279 (2019).

    CAS  Google Scholar 

  34. C. C. Ng and Y. T. Shyu, World J. Microbiol. Biotechnol., 20, 875 (2004).

    Article  CAS  Google Scholar 

  35. V. Revin, E. Liyaskina, M. Nazarkina, A. Bogatyreva, and M. Shchankin, Brazilian J. Microbiol., 49, 151 (2018).

    Article  CAS  Google Scholar 

  36. R. F. Dórame-Miranda, N. Gámez-Meza, L. Á. Medina-Juárez, and J. M. Ezquerra-Brauer, Carbohydr. Polym., 207, 91 (2019).

    Article  PubMed  CAS  Google Scholar 

  37. ISO 527-2: 2016, “Plastics — Determination of Tensile Properties”, 2012.

  38. J. Kim, Z. Cai, H. S. Lee, G. S. Choi, D. H. Lee, and C. Jo, J Polym. Res., 18, 739 (2011).

    Article  CAS  Google Scholar 

  39. A. Blanco and G. Blanco, “Carbohydrate”, pp.73–97, Medical Biochemistry, Academic Press, 2017.

  40. F. Hong, X. Guo, S. Zhang, S. Han, G. Yang, and L. J. Jönsson, Bioresour. Technol., 104, 503 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. J. H. Ha, O. Shezad, S. Khan, S. Y. Lee, J. W. Park, T. Khan, and J. K. Park, Korean J. Chem. Eng., 25, 812 (2008).

    Article  CAS  Google Scholar 

  42. D. Lin, P. Lopez-Sanchez, R. Li, and Z. Li, Bioresour. Technol., 151, 113 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. M. Rani, N. Rastogi, and K. Appaiah, J. Microbiol. Biotechnol. Biotechnol., 21, 739 (2011).

    Article  CAS  Google Scholar 

  44. X. Y. Yang, C. Huang, H. J. Guo, L. Xiong, J. Luo, B. Wang, X. Q. Lin, X. F. Chen, and X. D. Chen, Prep. Biochem. Biotechnol., 46, 37 (2016).

    Google Scholar 

  45. F. Yassine, N. Bassil, A. Chokr, A. E. Samrani, A. Serghei, G. Boiteux, and M. E. Tahchi, Cellulose, 23, 1087 (2016).

    Article  CAS  Google Scholar 

  46. A. Ashori, S. Sheykhnazari, T. Tabarsa, A. Shakeri, and M. Golalipour, Carbohydr. Polym., 90, 413 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. M. Ul-islam, J. Hwan, T. Khan, and J. Kon, Carbohydr. Polym., 92, 360 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. S. O. Dima, D. M. Panaitescu, C. Orban, M. Ghiurea, S. M. Doncea, R. C. Fierascu, C. L. Nistor, E. Alexandrescu, C. A. Nicolae, B. Trică, A. Moraru, and F. Oancea, Polymers, 9, 374 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  49. N. Soykeabkaew, C. Sian, S. Gea, T. Nishino, and T. Peijs, Cellulose, 16, 435 (2009).

    Article  CAS  Google Scholar 

  50. S.-Y. Kim, J.-N. Kim, Y.-J. Wee, D.-H. Park, and H.-W. Ryu, Appl. Biochem. Biotechnol., 131, 705 (2006).

    Article  PubMed  Google Scholar 

  51. M. C. I. M. Amin, A. G. Abadi, and H. Katas, Carbohydr. Polym., 99, 180 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. F. Mohammadkazemi, M. Azin, and A. Ashori, Carbohydr. Polym., 117, 518 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, and M. Uryu, J. Mater. Sci., 24, 3141 (1989).

    Article  CAS  Google Scholar 

  54. L. Indrarti and Indriyati, “Incorporation of Citrus Essential Oils into Bacterial Cellulose-based Edible Films and Assessment of Their Physical Properties”, pp.1–6, 1st International Symposium on Green Technology for Value Chains 2016, 2016.

Download references

Acknowledgment

The authors acknowledge the financial support from the Project of National Innovation System Research Incentives, Indonesian Ministry of Research and Technology, No. B-775/IPT.7/KP/VI/2020 and the facilities provided by The Research Unit for Clean Production—The Indonesian Institute of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myrtha Karina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srikandace, Y., Apriyana, A.Y., Zahrad, S.A. et al. Bacterial Cellulose Production by Komagataeibacter xylinus Using Rice-washed Water and Tofu Processing Wastewater with the Addition of Sodium Glutamate. Fibers Polym 23, 1190–1196 (2022). https://doi.org/10.1007/s12221-022-4729-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4729-4

Keywords

Navigation