Skip to main content
Log in

The Role of Cotton Fibers in Mediating the Energy Band Structure of TiO2-BiFeO3 Heterojunction in Cotton-TiO2-BiFeO3 Composites for Its Photodegradation of Congo Red Dyes and Photoreduction of Cr(VI) Ions

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

TiO2-based heterojunctions loaded on organic templates (e.g., cotton fabrics) are found to have improved photocatalytic activities. However, the role of fibrous templates on their photocatalytic properties has hardly been investigated. In this paper, TiO2-BiFeO3 heterojunction (TiO2-BFO) was immobilized on cotton fibers in hydrothermal process. The structures of both TiO2-BFO and cotton-TiO2-BFO composites (C-TiO2-BFO) were systematically characterized. Their photodegradation of Congo red (CR) dyes and photoreduction of Cr(VI) ions under visible lights were analyzed. Their active species were identified via trapping experiments and electron spin resonance spectra, and their energy band structures were examined via the density functional theory (DFT). Experimental results indicated that in comparison with the TiO2 loaded cotton fibers (C-TiO2), the superior photocatalytic properties of C-TiO2-BFO were attributed to its substitutional doping of C/O of cotton into BFO in the TiO2-BFO, which resulted in the narrowed band-gap, the strong light-harvesting capability, and the fast separation of photoinduced electron-hole pairs of C-TiO2-BFO. Importantly, DFT calculations testified that the energy band structure of TiO2-BFO could be mediated by constructing the built-in electric field between TiO2-BFO and cellulose cotton. The hole species were the dominant radicals in the C-TiO-BFO, while 1O2 species were the main radicals in the TiO-BFO in CR photodegradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Wang, R. X. Yang, T. Li, S. Komarneni, and B. J. Liu, Compos. Part. B-Eng., 205, 108512 (2021).

    Article  CAS  Google Scholar 

  2. M. A. Mohamed, W. N. W. Salleh, J. Jaafar, Z. A. M. Hir, M. S. Rosmi, M. Abd Mutalib, A. F. Ismail, and M. Tanemura, Carbohydr. Polym., 146, 166 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. M. A. Mohamed, M. F. M. Zain, L. J. Minggu, M. B. Kassim, N. A. S. Amin, W. N. W. Salleh, M. N. I. Salehmin, M. F. M. Nasir, and Z. A. M. Hir, Appl. Catal. B-Environ., 236, 265 (2018).

    Article  CAS  Google Scholar 

  4. A. S. Montaser and F. A. Mahmoud, Int. J. Biol. Macromol., 124, 659 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. X. Y. Chen, D. H. Kuo, and D. F. Lu, Chem. Eng. J., 295, 192 (2016).

    Article  CAS  Google Scholar 

  6. M. X. Du, Y. Du, Y. B. Feng, K. Yang, X. J. Lv, N. Jiang, and Y. Liu, Carbohydr. Polym., 195, 393 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. C. H. Tian, X. Tao, S. Luo, Y. Qing, X. H. Lu, J. R. She, and Y. Q. Wu, Environ. Sci-Nano, 5, 2129 (2018).

    Article  CAS  Google Scholar 

  8. M. Lu, Y. X. Cui, S. X. Zhao, and A. Fakhri, J. Photoch. Photobio. B, 205, 111842 (2020).

    Article  CAS  Google Scholar 

  9. Y. H. Zhan, Y. Y. Meng, W. Z. Li, Z. M. Chen, N. Yan, Y. C. Li, and M. Y. Teng, Ind. Crop. Prod., 122, 422 (2018).

    Article  CAS  Google Scholar 

  10. J. Y. Sun, D. Y. Li, Y. R. Li, Y. J. Cai, L. Sun, X. J. Yuan, G. Cao, H. M. Xu, and D. S. Xia, Chemistryselect, 3, 4463 (2018).

    Article  CAS  Google Scholar 

  11. Y. X. Li, J. J. Zhang, C. B. Zhan, F. G. Kong, W. L. Li, C. F. Yang, and B. S. Hsiao, Carbohydr. Polym., 233, 115838 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. S. Habibi and M. Jamshidi, Environ. Technol., 41, 3233 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. C. Zhao, F. L. Ran, L. Dai, C. Y. Li, C. Y. Zheng, and C. L. Si, Carbohydr. Polym., 255, 117343 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Y. N. Huo, Y. Jin, and Y. Zhang, J. Mol. Catal. A-Chem., 331, 15 (2010).

    Article  CAS  Google Scholar 

  15. S. Irfan, Z. Zhuanghao, F. Li, Y. X. Chen, G. X. Liang, J. T. Luo, and F. Ping, J. Mater. Res. Technol., 8, 6375 (2019).

    Article  CAS  Google Scholar 

  16. S. Bharathkumar, M. Sakar, and S. Balakumar, J. Phys. Chem. C, 120, 18811 (2016).

    Article  CAS  Google Scholar 

  17. C. B. Zhu, Z. W. Chen, C. F. Zhong, and Z. Y. Lu, J. Mater. Sci-Mater. El., 29, 4817 (2018).

    Article  CAS  Google Scholar 

  18. S. Irfan, Y. Shen, S. Rizwan, H. C. Wang, S. B. Khan, and C. W. Nan, J. Am. Ceram. Soc., 100, 31 (2017).

    Article  CAS  Google Scholar 

  19. M. Humayun, Z. P. Zheng, Q. Y. Fu, and W. Luo, Environ. Sci. Pollut. Res., 26, 17696 (2019).

    Article  CAS  Google Scholar 

  20. Y. L. Liu and J. M. Wu, Nano Energy, 56, 74 (2019).

    Article  CAS  Google Scholar 

  21. Y. W. Li, F. Liu, M. Li, W. Li, X. J. Qi, M. Xue, Y. Q. Wang, and F. L. Han, J. Sol-Gel Sci. Technol., 93, 402 (2020).

    Article  CAS  Google Scholar 

  22. H. Zhang, Y. Han, L. M. Yang, X. L. Guo, H. L. Wu, and N. T. Mao, Catalysts, 10, 531 (2020).

    Article  CAS  Google Scholar 

  23. W. Wang, N. Li, Y. Chi, Y. J. Li, W. F. Yan, X. T. Li, and C. L. Shao, Ceram. Int., 39, 3511 (2013).

    Article  CAS  Google Scholar 

  24. H. Zhang, F. Li, and H. Zhu, Fiber. Polym., 14, 43 (2013).

    Article  CAS  Google Scholar 

  25. A. S. Zhu, Q. D. Zhao, X. Y. Li, and Y. Shi, ACS Appl. Mater. Interfaces, 6, 671 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. N. N. Wang, Y. H. Han, and S. Li, Water Air Soil Poll., 230, 154 (2019).

    Article  CAS  Google Scholar 

  27. G. Q. Tan, L. N. She, T. Liu, C. Xu, H. J. Ren, and A. Xia, Appl. Catal. B-Environ., 207, 120 (2017).

    Article  CAS  Google Scholar 

  28. M. Silva, M. E. Azenha, M. M. Pereira, H. D. Burrows, M. Sarakha, C. Forano, M. F. Ribeiro, and A. Fernandes, Appl. Catal. B-Environ., 100, 1 (2010).

    Article  CAS  Google Scholar 

  29. S. Nam, A. D. French, B. D. Condon, and M. Concha, Carbohydr. Polym., 135, 1 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. R. Hori and M. Wada, Cellulose, 13, 281 (2006).

    Article  CAS  Google Scholar 

  31. Y. Y. Yue, C. J. Zhou, A. D. French, G. Xia, G. P. Han, Q. W. Wang, and Q. L. Wu, Cellulose, 19, 1173 (2012).

    Article  CAS  Google Scholar 

  32. S. Li, Y. H. Lin, B. P. Zhang, J. F. Li, and C. W. Nan, J. Appl. Phys., 105, 054310 (2009).

    Article  CAS  Google Scholar 

  33. H. M. Xu, H. C. Wang, J. Shi, Y. H. Lin, and C. W. Nan, Nanomaterials, 6, 215 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  34. L. Q. Ye, J. Y. Liu, Z. Jiang, T. Y. Peng, and L. Zan, Nanoscale, 5, 9391 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. R. F. Liu, W. B. Li, and A. Y. Peng, Appl. Surf. Sci., 427, 608 (2018).

    Article  CAS  Google Scholar 

  36. M. I. Mejia, J. M. Marín, G. Restrepo, C. Pulgarín, E. Mielczarski, J. Mielczarski, Y. Arroyo, J. C. Lavanchy, and J. Kiwi, Appl. Catal. B-Environ., 91, 481 (2009).

    Article  CAS  Google Scholar 

  37. X. F. Wang, J. C. Fan, F. Qian, and Y. L. Min, RSC Adv., 6, 49966 (2016).

    Article  CAS  Google Scholar 

  38. Y. A. Li, J. Li, L. Chen, H. B. Sun, H. Zhang, H. Guo, and L. Feng, Front. Chem., 6, 649 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Y. F. Ye, H. B. Li, F. Cai, C. C. Yan, R. Si, S. Miao, Y. S. Li, G. X. Wang, and X. H. Bao, ACS Catal., 7, 7638 (2017).

    Article  CAS  Google Scholar 

  40. C. Y. Chu and M. H. Huang, J. Mater. Chem. A, 5, 15116 (2017).

    Article  CAS  Google Scholar 

  41. F. Pogacean, M. Stefan, D. Toloman, A. Popa, C. Leostean, A. Turza, M. Coros, O. Pana, and S. Pruneanu, Nanomaterials, 10, 1473 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  42. Y. H. Sun, X. N. Li, A. Vijayakumar, H. Liu, C. Y. Wang, S. J. Zhang, Z. P. Fu, Y. L. Lu, and Z. X. Cheng, ACS Appl. Mater. Interfaces, 13, 11050 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Q. Han, C. B. Wu, H. M. Jiao, R. Y. Xu, Y. Z. Wang, J. J. Xie, Q. Guo, and J. W. Tang, Adv. Mater., 33, 2008180 (2021).

    Article  CAS  Google Scholar 

  44. G. Lu, B. Song, Z. Li, H. Y. Liang, and X. J. Zou, Chem. Eng. J., 402, 125645 (2020).

    Article  CAS  Google Scholar 

  45. G. R. Jia, Y. Wang, X. Q. Cui, Z. X. Yang, L. L. Liu, H. Y. Zhang, Q. Wu, L. R. Zheng, and W. T. Zheng, Appl. Catal. B-Environ., 258, 117959 (2019).

    Article  CAS  Google Scholar 

  46. Y. Fu, Z. P. Mao, D. Zhou, Z. L. Hu, Y. F. Tu, Y. Tian, X. L. Zhu, and G. Zheng, Mater. Res. Express, 6, 1050c6 (2019).

    Article  CAS  Google Scholar 

  47. H. S. Zhang, D. Yu, W. Wang, P. Gao, L. S. Zhang, S. Zhong, and B. J. Liu, Adv. Powder Technol., 30, 3182 (2019).

    Article  CAS  Google Scholar 

  48. H. M. Jia, W. W. He, W. G. Wamer, X. N. Han, B. B. Zhang, S. Zhang, Z. Zheng, Y. Xiang, and J. J. Yin, J. Phys. Chem. C, 118, 21447 (2014).

    Article  CAS  Google Scholar 

  49. R. D. Kale, P. S. Bansal, and V. G. Gorade, J. Polym. Environ., 26, 355 (2018).

    Article  CAS  Google Scholar 

  50. S. I. S. Mashuri, M. L. Ibrahim, M. F. Kasim, M. S. Mastuli, U. Rashid, A. H. Abdullah, A. Islam, N. A. Mijan, Y. H. Tan, N. Mansir, N. H. M. Kaus, and T. Y. Y. Hin, Catalysts, 10, 1260 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 51873169), the International Science and Technology Cooperation Project of Shaanxi Province (2020KW-069), and the Sanqin Scholar Foundation (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Ethics declarations

The authors declare no competing financial interest.

Supplementary Material

12221_2022_4045_MOESM1_ESM.pdf

The Role of Cotton Fibers in Mediating the Energy Band Structure of TiO2-BiFeO3 Heterojunction in Cotton-TiO2-BiFeO3 Composites for Its Photodegradation of Congo Red Dyes and Photoreduction of Cr(VI) Ions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhang, H., Li, W. et al. The Role of Cotton Fibers in Mediating the Energy Band Structure of TiO2-BiFeO3 Heterojunction in Cotton-TiO2-BiFeO3 Composites for Its Photodegradation of Congo Red Dyes and Photoreduction of Cr(VI) Ions. Fibers Polym 23, 2213–2224 (2022). https://doi.org/10.1007/s12221-022-4045-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4045-z

Keywords

Navigation