Skip to main content

Advertisement

Log in

Adsorption Characteristic of Cr(VI) onto Different Activated Coal Fly Ashes: Kinetics, Thermodynamic, Application Feasibility, and Error Analysis

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Raw coal fly ash (RCFA) was recycled as three kinds of adsorbents by hydroxyl anion (OH), hydrogen ion (H+), and thermal activation, respectively, for the adsorption of Cr(VI) from water. The H+ activation can explore the adsorptive potential of RCFA more effectively than the other two methods. The specific surface areas of the adsorbents are 12.33, 16.32, and 13.89 m2 g−1 for OH, H+, and thermal activation, respectively. The adsorption process follows the pseudo-second-order kinetic model and the Langmuir model better and exhibits exothermic property. The activation energy (20.65–31.88 kJ mol−1) and the negative Gibbs free energy reveal that the adsorption is a physical and spontaneous process. The adsorbents derived from OH, H+, and thermal activation can be used at least 5, 7, and 4 times, respectively, while the one from H+ activation has the best adsorption capacity (6.41 μg g−1 for the first run). The adsorption process can introduce other metallic/toxic elements, but within the Chinese standard. The preparation cost of the H+ activation is $1103 ton−1 adsorbent, while the treatment cost is $1.6 ton−1 water. The more accurate parameters in the pseudo-second-order kinetic model and Langmuir model can be calculated by nonlinear method and provided by the error function of the sum of the squares of the errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An, C. J., Yang, S. Q., Huang, G. H., Zhao, S., Zhang, P., & Yao, Y. (2016). Removal of sulfonated humic acid from aqueous phase by modified coal fly ash waste: equilibrium and kinetic adsorption studies. Fuel, 165, 264–271.

    Article  CAS  Google Scholar 

  • Arshadi, M., Mousavinia, F., Abdolmaleki, M. K., Amiri, M. J., & Khalafi-Nezhad, A. (2017). Removal of salicylic acid as an emerging contaminant by a polar nano-dendritic adsorbent from aqueous media. Journal of Colloid and Interface Science, 493, 138–149.

    Article  CAS  Google Scholar 

  • Barrera-Diaz, C. E., Lugo-Lugo, V., & Bilyeu, B. (2012). A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. Journal of Hazardous Materials, 223, 1–12.

    Article  Google Scholar 

  • Belviso, C. (2018). State-of-the-art applications of fly ash from coal and biomass, a focus on zeolite synthesis processes and issues. Progress in Energy and Combustion Science, 65, 109–135.

    Article  Google Scholar 

  • Choi, H. A., Park, H. N., & Won, S. W. (2017). A reusable adsorbent polyethylenimine/polyvinyl chloride crosslinked fiber for Pd(II) recovery from acidic solutions. Journal of Environmental Management, 204, 200–206.

    Article  CAS  Google Scholar 

  • Dash, S., Chaudhuri, H., Gupta, R., Nair, U. G., & Sarkar, A. (2017). Fabrication and application of low-cost thiol functionalized coal fly ash for selective adsorption of heavy toxic metal ions from water. Industrial and Engineering Chemistry Research, 56, 1461–1470.

    Article  CAS  Google Scholar 

  • Eliche-Quesada, D., Sandalio-Perez, J. A., Martinez-Martinez, S., Perez-Villarejo, L., & Sanchez-Soto, P. J. (2018). Investigation of use of coal fly ash in eco-friendly construction materials, fired clay bricks and silica-calcareous non fired bricks. Ceramics International, 44, 4400–4412.

    Article  CAS  Google Scholar 

  • Franus, W., Wiatros-Motyka, M. M., & Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research, 22, 9464–9474.

    Article  CAS  Google Scholar 

  • Inglezakis, V. J., & Zorpas, A. A. (2012). Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems. Desalination and Water Treatment, 39, 149–157.

    CAS  Google Scholar 

  • Kapoor, A., & Yang, R. T. (1989). Correlation of equilibrium adsorption data of condensable vapours on porous adsorbents. Gas Separation and Purification, 3, 187–192.

    Article  CAS  Google Scholar 

  • Kumar, V., Matsuda, M., & Miyake, M. (2008). Resource recovery from coal fly ash waste, an overview study. Journal of the Ceramic Society of Japan, 116, 167–175.

    Article  Google Scholar 

  • Koukouzas, N., Vasilatos, C., Itskos, G., Mitsis, I., & Moutsatsou, A. (2010). Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials. Journal of Hazardous Materials, 173, 581–588.

    Article  CAS  Google Scholar 

  • Hu, L. M., Zhang, G. S., Liu, M., Wang, Q., & Wang, P. (2018). Enhanced degradation of bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation: effects of pH, inorganic anions, and water matrix. Chemical Engineering Journal, 338, 300–310.

    Article  CAS  Google Scholar 

  • Lotlikar, N. P., Damare, S. R., Meena, R. M., Linsy, P., & Mascarenhas, B. (2018). Potential of marine-derived fungi to remove hexavalent chromium pollutant from culture broth. Indian Journal of Microbiology, 58, 182–192.

    Article  CAS  Google Scholar 

  • Leung, R., Venus, C., & Zeng, T. (2018). Structure-function relationships of hydroxyl radical scavenging and chromium-VI reducing cysteine-tripeptides derived from rye secalin. Food Chemistry, 254, 165–169.

    Article  CAS  Google Scholar 

  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11, 431–441.

    Article  Google Scholar 

  • Miretzky, P., & Cirelli, A. F. (2010). Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials, a review. Journal of Hazardous Materials, 180, 1–19.

    Article  CAS  Google Scholar 

  • Ma, Z. S., Liu, D. G., Zhu, Y., Li, Z. H., Li, Z. X., Tian, H. F., & Liu, H. Q. (2016). Graphene oxide/chitin nanofibril composite foams as column adsorbents for aqueous pollutants. Carbohydrate Polymers, 144, 230–237.

    Article  CAS  Google Scholar 

  • Ng, J. C. Y., Cheung, W. H., & McKay, G. (2002). Equilibrium studies of the sorption of Cu(II) ions onto chitosan. Journal of Colloid and Interface Science, 255, 64–74.

    Article  CAS  Google Scholar 

  • Porter, J. F., McKay, G., & Choy, K. H. (1999). The prediction of sorption from a binary mixture of acidic dyes using single- and mixed-isotherm variants of the ideal adsorbed solute theory. Chemical Engineering Science, 54, 5863–5885.

    Article  CAS  Google Scholar 

  • Rengaraja, S., Yeon, J. W., Kim, Y., Jung, Y., Ha, Y. K., & Kim, W. H. (2007). Adsorption characteristics of Cu(II) onto ion exchange resins 252H and 1500H, kinetics, isotherms and error analysis. Journal of Hazardous Materials, 143, 469–477.

    Article  Google Scholar 

  • Seidel, A., & Gelbin, D. (1988). On applying the ideal adsorbed solution theory to multicomponent adsorption equilibria of dissolved organic components on modified carbon. Chemical Engineering Journal, 43, 79–89.

    Article  CAS  Google Scholar 

  • Seidel-Morgenstern, A., & Guiochon, G. (1993). Modelling of the competitive isotherms and the chromatographic separation of two enantiomers. Chemical Engineering Journal, 48, 2787–2797.

    Article  CAS  Google Scholar 

  • Soco, E., & Kalembkiewicz, J. (2015). Removal of copper(II) and zinc(II) ions from aqueous solution by chemical treatment of coal fly ash. Croatica Chemica Acta, 88, 267–279.

    Article  CAS  Google Scholar 

  • Sočo, E., & Kalembkiewicz, J. (2011). Control of Cr(VI) content in waste coal fly ash. In M. J. B. Murria (Ed.), Management of Hazardous Residues Containing Cr(VI) (pp. 317–340). New York: Nova Science Publishers Inc.

    Google Scholar 

  • Tauanov, Z., Shah, D., Inglezakis, V., & Jamwal, P. K. (2018). Hydrothermal synthesis of zeolite production from coal fly ash, a heuristic approach and its optimization for system identification of conversion. Journal of Cleaner Production, 182, 616–623.

    Article  CAS  Google Scholar 

  • Uzarowicz, L., Skiba, M., Leue, M., Zagorski, Z., Gasinski, A., & Trzcinski, J. (2018). Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part II. Mineral transformations and soil evolution. Catena, 162, 255–269.

    Article  CAS  Google Scholar 

  • Vereshchagina, T. A., Kutikhina, E. A., Solovyov, L. A., Vereshchagin, S. N., Mazurova, E. V., Chernykh, Y. Y., & Anshits, A. G. (2018). Synthesis and structure of analcime and analcime-zirconia composite derived from coal fly ash cenospheres. Microporous and Mesoporous Materials, 258, 228–235.

    Article  CAS  Google Scholar 

  • Wang, W. X., Ye, Z. B., & Li, F. (2016). Removal of oil from simulated oilfield wastewater using modified coal fly ashes. Desalination and Water Treatment, 57, 9644–9650.

    Article  CAS  Google Scholar 

  • Wang, N. N., Zhao, Q., & Zhang, A. L. (2017a). Catalytic oxidation of organic pollutants in wastewater via a Fenton-like process under the catalysis of HNO3-modified coal fly ash. RSC Advances, 7, 27619–27628.

    Article  CAS  Google Scholar 

  • Wang, N. N., Chen, J. Q., Zhao, Q., & Xu, H. (2017b). Study on preparation conditions of coal fly ash catalyst and catalytic mechanism in a heterogeneous Fenton-like process. RSC Advances, 7, 52524–52532.

    Article  CAS  Google Scholar 

  • Wang, N. N., Hao, L. L., Chen, J. Q., Zhao, Q., & Xu, H. (2018). Adsorptive removal of organics from aqueous phase by acid-modified coal fly ash, preparation, adsorption, and Fenton regenerative valorization of “spent” adsorbent. Environmental Science and Pollution Research, 25, 12481–12490.

    Article  CAS  Google Scholar 

  • Wu, P. F., Tang, Y. Y., & Cai, Z. W. (2018). Dual role of coal fly ash in copper ion adsorption followed by thermal stabilization in a spinel solid solution. RSC Advances, 8, 8805–8812.

    Article  CAS  Google Scholar 

  • Xi, D. L., Sun, Y. S., & Liu, X. Y. (1995). Environment monitoring. Beijing: Higher Education Press.

    Google Scholar 

  • Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., & Xi, Y. Q. (2015). A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 141, 105–121.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 51808039, 21677018); Science and Technology Projects of Beijing Municipal Education Commission (grant number KM201910017008); and Jointly Projects of Beijing Natural Science Foundation and Beijing Municipal Education Commission (grant number KZ201810017024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nannan Wang or Shuo Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 985 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Han, Y. & Li, S. Adsorption Characteristic of Cr(VI) onto Different Activated Coal Fly Ashes: Kinetics, Thermodynamic, Application Feasibility, and Error Analysis. Water Air Soil Pollut 230, 154 (2019). https://doi.org/10.1007/s11270-019-4215-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4215-9

Keywords

Navigation