Skip to main content
Log in

Selected Aromatic Plants Extracts as an Antimicrobial and Antioxidant Finish for Cellulose Fabric- Direct Impregnation Method

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Six ethanolic extracts, obtained from anise, fennel, lavender, sage, mint, white horehound and their mixture were directly applied onto cellulose (viscose) fabric to impart antimicrobial and antioxidant functionality for its potential use as a wound dressing. Antimicrobial activity of treated fabrics against gram-positive bacteria S. aureus and yeast C. albicans, as common skin pathogens, was determined by agar diffusion test. The most effective against both microorganisms was viscose with anise, fennel, and mint, whereby clear inhibition and suppression zones were detected. The oxidation of viscose, intended to improve sorption properties and consequently adsorption of extracts, increased the antimicrobial activity of viscose with a mixture of extracts. The antioxidant activity of fabric samples with extracts, determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay, was significantly higher when compared to the untreated viscose sample (2.38 %) and ranged from 11.82 % for viscose with fennel up to 87.71 % for viscose with sage. Oxidation of fabric before sorption of extracts mixture contributes to higher antioxidant activity (68.81 %). Direct impregnation of bioactive plants extracts onto the fabric represents low cost and simple method, which makes it suitable for obtaining eco-friendly, low-cost disposable medical textiles with the therapeutic and prophylactic role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Rigby and S. C. Anand in “Handbook of Technical Textiles” (A. R. Horrocks and S. C. Anand Eds.), pp.407–425, Woodhead Publishing Limited, Cambridge, 2000.

  2. T. Ramachandran, K. Rajendrakumar, and R. Rajendran, J. Inst. Eng. (India), Part TX Text. Eng. Div., 84, 42 (2004).

    Google Scholar 

  3. M. Joshi, S. W. Ali, R. Purwar, and S. Rajendran, Indian J. Fibre Text. Res., 34, 295 (2009).

    CAS  Google Scholar 

  4. E. Koh and K. H. Hong, Dye. Pigment., 103, 222 (2014).

    Article  CAS  Google Scholar 

  5. M. Pérez-Recalde, I. E. Ruiz Arias, and É. B. Hermida, Phytomedicine, 38, 57 (2018).

    Article  CAS  Google Scholar 

  6. T. Ristić, L. Fras Zemljič, M. Novak, M. K. Kunčič, S. Sonjak, N. G. Cimerman, and S. Strnad in “Science Againstmicrobial Pathogens: Communicating Current Research and Technological Advances” (A. Mendez-Vilas Ed.), pp.37–51, Microbiology Book Series, Formatex Research Centre, Badajoz, Spain, 2011.

  7. D. Nithyakalyani, T. Ramachandran, R. Rajendran, and M. Mahalakshmi, J. Appl. Polym. Sci., 129, 672 (2013).

    Article  CAS  Google Scholar 

  8. R. Rajendran, R. Radhai, T. M. Kotresh, and E. Csiszar, Carbohydr. Polym., 91, 613 (2013).

    Article  CAS  Google Scholar 

  9. P. Ganesan and K. J. Vishnu Vardhini, Indian J. Nat. Prod. Resour., 6, 227 (2015).

    CAS  Google Scholar 

  10. M. P. Sathianarayanan, N. V. Bhat, S. S. Kokate, and V. E. Walunj, Indian J. Fibre Text. Res., 35, 50 (2010).

    CAS  Google Scholar 

  11. S. A. Wani and F. Mohammad, Int. J. Biol. Macromol., 109, 907 (2018).

    Article  CAS  Google Scholar 

  12. P. Saranraj and S. Sivasakthi, Glob. J. Pharmacol., 8, 316 (2014).

    Google Scholar 

  13. L. F. Zemljič, J. Volmajer, T. Ristić, M. Bracic, O. Sauperl, and T. Krezž, Text. Res. J., 84, 819 (2014).

    Article  CAS  Google Scholar 

  14. S. Strnad, O. Šauperl, and L. Fras-Zemljič in “Textiles: Types, Uses and Production Methods” (Ahmed El Nemr Ed.), pp.181–199, Publisher Nova Science Publishers, 2012.

  15. T. Nikolić, T. Hajnrih, A. Kramar., Z. Petronijevic, and M. Kostic, Cell. Chem. Technol., 52, 459 (2018).

    Google Scholar 

  16. T. Nikolic, J. Milanovic, A. Kramar, Z. Petronijevic, Lj. Milenkovic, and M. Kostic, Cellulose, 21, 1369 (2014).

    Article  CAS  Google Scholar 

  17. L. Y. Tan, L. T. Sin, S. T. Bee, C. T. Ratnam, K. K. Woo, T. T. Tee, and A. R. Rahmat, J. Vinyl. Addit. Technol., 25, E3 (2019).

    Article  CAS  Google Scholar 

  18. L. F. Zemljič, Z. Peršin, O. Šauperl, A. Rudolf, and M. Kostić, Text. Res. J., 88, 2519 (2018).

    Article  CAS  Google Scholar 

  19. Council of Europe European Pharmacopoeia, 3rd ed., Council of Europe, Strasbourg, 1999.

  20. T. Nikolic, M. Kostic, J. Praskalo, B. Pejic, Z. Petronijevic, and P. Skundric, Carbohydr. Polym., 82, 976 (2010).

    Article  CAS  Google Scholar 

  21. A. Klacnik, S. Piskernik, B. Jeršek, and S. S. Možina, J. Microbiol. Methods., 81, 121 (2010).

    Article  CAS  Google Scholar 

  22. J. Sheikh and I. Bramhecha, Int. J. Biol. Macromol., 118, 896 (2018).

    Article  CAS  Google Scholar 

  23. B. Speranza and M. R. Corbo in “Application of Alternative Food-Preservation Technologies to Enhance Food Safety & Stability” (A. Bevilacqua, M. R. Corbo, and M. Sinigaglia Eds.), pp.35–57, Bentham Science, 2010.

  24. A. Kramar, V. Prysiazhnyi, B. Dojčinović, K. Mihajlovski, B. M. Obradović, M. M. Kuraica, and M. Kostić, Surf. Coat. Technol., 234, 92 (2013).

    Article  CAS  Google Scholar 

  25. M. Petrovic, D. Suznjevic, F. Pastor, M. Veljovic, L. Pezo, M. Antic, and S. Gorjanovic, Comb. Chem. High. T. Scr., 19, 58 (2016).

    CAS  Google Scholar 

  26. A. D. T. Phan, G. Netzel, D. Wang, B. M. Flanagan, B. R. D’Arcy, and M. J. Gidley, Food Chem., 171, 388 (2015).

    Article  CAS  Google Scholar 

  27. D. Liu, M. Martinez-Sanz, P. Lopez-Sanchez, E. P. Gilbert, and M. J. Gidley, Food Hydrocoll., 63, 496 (2017).

    Article  CAS  Google Scholar 

  28. T. dos S. Costa, H. Rogez, and R. da S. Pena, Food Sci. Technol., 35, 314 (2015).

    Article  Google Scholar 

  29. F. Carrillo, X. Colom, J. J. Suñol, and J. Saurina, Eur. Polym. J., 40, 2229 (2004).

    Article  CAS  Google Scholar 

  30. J. Siroky, R. S. Blackburn, T. Bechtold, J. Taylor, and P. White, Cellulose, 17, 103 (2010).

    Article  CAS  Google Scholar 

  31. M. Schwanninger, J. C. Rodrigues, H. Pereira, and B. Hinterstoisser, Vib. Spectrosc., 36, 23 (2004).

    Article  CAS  Google Scholar 

  32. A. Potthast, T. Rosenau, and P. Kosma in “Polysaccharides II” (D. Klemm Ed.) Advances in Polymer Science, Vol. 205, pp.1–48, Springer. Berlin Heidelberg, 2006.

    Google Scholar 

  33. J. Coates in “Encyclopedia of Analytical Chemistry” (R. A. Meyers Ed.), pp.10815–10837, John Wiley & Sons Ltd., Chichester, 2000.

  34. R. N. Oliveira, M. C. Mancini, F. C. S. de Oliveira, T. M. Passos, B. Quilty, R. M. da S. M. Thiré, and G. B. McGuinness, Matéria (Rio de Janeiro), 21, 767 (2016).

    Article  CAS  Google Scholar 

  35. G. F. El Fawal, A. M. Omer, and T. M. Tamer, J. Food Sci. Technol., 56, 1510 (2019).

    Article  CAS  Google Scholar 

  36. O. Taofiq, S. A. Heleno, R. C. Calhelha, I. P. Fernandes, M. J. Alves, L. Barros, A. M. González-Paramás, I. C. F. R. Ferreira, and M. F. Barreiro, Microchem. J., 147, 469 (2019).

    Article  CAS  Google Scholar 

  37. J. Y. Cho, J. H. Moon, K. Y. Seong, and K. H. Park, Biosci. Biotechnol. Biochem., 62, 2273 (1998).

    Article  CAS  Google Scholar 

  38. D. Stojković, J. Petrović, M. Soković, J. Glamočlija, J. Kukić-Marković, and S. Petrović, J. Sci. Food Agric., 93, 3205 (2013).

    Article  CAS  Google Scholar 

  39. B. Chai, W. Jiang, M. Hu, Y. Wu, and H. Si, Synergy, 9, 100055 (2019).

    Article  Google Scholar 

  40. B. G. Cruz, H. S. dos Santos, P. N. Bandeira, T. H. S. Rodrigues, M. G. C. Matos, M. F. Nascimento, G. G. C. de Carvalho, R. Braz-Filho, A. M. R. Teixeira, S. R. Tintino, and H. D. M. Coutinho, Microb. Pathog., 143, 104144 (2020).

    Article  CAS  Google Scholar 

  41. J. Wang, X. Fang, L. Ge, F. Cao, L. Zhao, Z. Wang, and W. Xiao, PLoS One, 13, e0197563 (2018).

    Article  CAS  Google Scholar 

  42. A. Dávalos and M. A. Lasunción in “Wine Chemistry and Biochemistry”, pp.571–591, Springer New York, New York, NY, 2009.

    Book  Google Scholar 

  43. C. Papuc, G. V. Goran, C. N. Predescu, V. Nicorescu, and G. Stefan, Compr. Rev. Food Sci. Food Saf., 16, 1243 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Slavica Maletic (Faculty of Physics, University of Belgrade) for providing ATR-FTIR measurements. This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-68/2020-14/200135 and 451-03-9/2021-14/200051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Kramar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramar, A., Petrović, M., Mihajlovski, K. et al. Selected Aromatic Plants Extracts as an Antimicrobial and Antioxidant Finish for Cellulose Fabric- Direct Impregnation Method. Fibers Polym 22, 3317–3325 (2021). https://doi.org/10.1007/s12221-021-3007-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-3007-1

Keywords

Navigation