Skip to main content
Log in

Manufacturing Optimization and Experimental Investigation of Ex-situ Core-shell Particles Toughened Carbon/Elium® Thermoplastic Composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Current research investigates the effect of the core-shell (C/SH) particles in composites manufactured using novel thermoplastic Elium® resin and carbon fiber reinforcement of different areal weights, 200 gsm and 400 gsm bi-angle non-crimp carbon fabrics (NCCFs). The core-shell particles were activated using the ex-situ methodology which involves the activation of particles before the Resin transfer molding (RTM) injection process. Recommended particle activation parameters are established after carrying out a detailed microscopic study to understand the melting and flattening behavior of these particles. Static indentation and damping attributes are studied to understand the influence of C/SH particles added novel carbon/Elium® composite in improving the out-of plane properties and dynamic mechanical attributes respectively. The interply regions were also toughened with the addition of 1% core-shell particles and the intensity of load drop has reduced by 20% while comparing the thick and thin ply NCCF/Elium® composites. Microscopic examination has shown that the core-shell particles helped to spread the damage evenly throughout the specimen and absorbed more energy during the static-indentation. Loss factor or damping for thick ply Elium® composite and thin ply epoxy composite is increased by 19% and 16.4% with the addition of 5% and 1% C/SH particles respectively. The underlying reasons for improvement offered by C/SH particles in quasi-static impact and dynamic mechanical tests are also deliberated in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Bhudolia, S. C. Joshi, A. Bert, G. R. Gohel, and M. Raama, Fiber. Polym., 20, 1716 (2019).

    Article  CAS  Google Scholar 

  2. T. J. Kang and S. H. Lee, J. Compos. Mater., 28, 1574 (1994).

    Article  Google Scholar 

  3. K. A. Dransfield, L. K. Jain, and Y.-W. Mai, Compos. Sci. Technol., 58, 815 (1998).

    Article  CAS  Google Scholar 

  4. G. L. Farley, B. T. Smith, and J. Maiden, J. Reinf. Plast. Compos., 11, 787 (1992).

    Article  CAS  Google Scholar 

  5. Y.-W. M. Amar and C. Garg, Compos. Sci. Technol., 31, 179 (1988).

    Article  Google Scholar 

  6. T. Yokozeki, Y. Aoki, and T. Ogasawara, Compos. Struct., 82, 382 (2008).

    Article  Google Scholar 

  7. S. K. Bhudolia, S. C. Joshi, and Y. D. Boon, Fiber. Polym., 20, 1036 (2019).

    Article  CAS  Google Scholar 

  8. V. M. V. Lopresto, C. Leone, and G. Caprino, Compos. Sci. Technol., 66, 206 (2006).

    Article  CAS  Google Scholar 

  9. S. Black, “Bi-angle Fabrics Find First Commercial Application”, http://www.compositesworld.com/articles/bi-angle-fabrics-find-first-commercial-application (Accessed June 7, 2020).

  10. P. K. Saha, “Aerospace Manufacturing Processes”, 1st ed. CRC Press, 2016.

  11. V. Dikshit, K. S. Bhudolia, and C. S. Joshi, Fibers, 5, 38 (2017).

    Article  Google Scholar 

  12. K. Mehar, S. K. Panda, and B. K. Patle, Polym. Compos., 39, 3792 (2018).

    Article  CAS  Google Scholar 

  13. S. X. Hengshi Zhou, Mater. Lett., 10, 601 (2014).

    Google Scholar 

  14. I. Ozsoy, A. Demirkol, A. Mimaroglu, H. Unal, and Z. Demir, Strojniški vestnik — J. Mech. Eng., 61, 601 (2015).

    Article  Google Scholar 

  15. M. Ali and S. C. Joshi, J. Mater. Sci., 48, 8354 (2013).

    Article  CAS  Google Scholar 

  16. M. Ali and S. C. Joshi, Int. J. Damage Mech., 21, 1106 (2012).

    Article  Google Scholar 

  17. W. Wu, Dissertation, Clausthal University of Technology, Clausthal-Zellerfeld, Germany, 2013.

  18. W. Wu, F. Klunker, L. Xie, B. Jiang, and G. Ziegmann, Compos. Part A: Appl. Sci. Manuf., 53, 190 (2013).

    Article  CAS  Google Scholar 

  19. C.-Y. Huang and J.-L. Tsai, J. Compos. Mater., 49, 545 (2014).

    Article  Google Scholar 

  20. S. K. Bhudolia, P. Perrotey, and S. C. Joshi, Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 230, 64 (2016).

    Article  Google Scholar 

  21. S. K. Bhudolia, P. Perrotey, and S. C. Joshi, Compos. Struct., 179, 502 (2017).

    Article  Google Scholar 

  22. S. K. Bhudolia, P. Perrotey, and S. C. Joshi, Materials, 10, 293 (2017).

    Article  Google Scholar 

  23. S. K. Bhudolia and S. C. Joshi, Compos. Struct., 203, 696 (2018).

    Article  Google Scholar 

  24. S. K. Bhudolia, P. Perrotey, and S. C. Joshi, Compos. Part B: Eng., 134, 246 (2018).

    Article  CAS  Google Scholar 

  25. S. K. Bhudolia, K. K. Kam, and S. C. Joshi, J. Ind. Text., 47, 1887 (2018).

    Article  CAS  Google Scholar 

  26. M. E. Kazemi, L. Shanmugam, D. Lu, X. Wang, B. Wang, and J. Yang, Compos. Part A-Appl. Sci. Manuf., 125, 105523 (2019).

    Article  CAS  Google Scholar 

  27. P. Khalili, B. Blinzler, R. Kádár, P. Blomqvist, A. Sandinge, R. Bisschop, and X. Liu, Compos. Part A-Appl. Sci. Manuf., 137, 105986 (2020).

    Article  CAS  Google Scholar 

  28. P. Khalili, B. Blinzler, R. Kádár, R. Bisschop, M. Försth, and P. Blomqvist, Materials, 12, 2648 (2019).

    Article  CAS  Google Scholar 

  29. S. K. Bhudolia, P. Perrotey, and S. C. Joshi, Materials, 10 (2017).

  30. K. van Rijswijk and H. E. N. Bersee, Compos. Part A-Appl. Sci. Manuf., 38, 666 (2007).

    Article  Google Scholar 

  31. W. Wu, “Proceedings of the19th International Conference on Composite Materials”, Canada, Montreal, 2013.

  32. T. S. Lundstrom and M. Zetterberg, “Proceedings of the 5th International Conference on Flow Processes in Composite Materials”, Plymouth, UK, July, 1999.

  33. T. S. Lundström, Compos. Part A-Appl. Sci. Manuf., 31, 1345 (2000).

    Article  Google Scholar 

  34. S. K. Bhudolia, S. C. Joshi, A. Bert, B. Yi Di, R. Makam, and G. Gohel, Compos. Commun., 13, 129 (2019).

    Article  Google Scholar 

  35. ASTM D7028-07, “Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA)”, ASTM International, West Conshohocken, PA, 2015.

    Google Scholar 

  36. S. K. Bhudolia, G. Gohel, S. C. Joshi, and K. F. Leong, Compos. Commun., 21, 100383 (2020).

    Article  Google Scholar 

  37. S. Tsai, S. Sihn, and R. Kim, 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, Texas, 2005.

  38. S. Sihn, R. Kim, K. Kawabe, and S. Tsai, Compos. Sci. Technol., 67, 996 (2007).

    Article  CAS  Google Scholar 

  39. R. Amacher, J. Cugnoni, J. Botsis, L. Sorensen, W. Smith, and C. Dransfeld, Compos. Sci. Technol., 101, 121 (2014).

    Article  CAS  Google Scholar 

  40. M. Ali and S. C. Joshi, Int. J. Damage Mech., 21, 1106 (2012).

    Article  Google Scholar 

  41. J. Chen, A. J. Kinloch, S. Sprenger, and A. C. Taylor, Polymer, 54, 4276 (2013).

    Article  CAS  Google Scholar 

  42. R. Matadi Boumbimba, C. Froustey, P. Viot, J. M. Olive, F. Léonardi, P. Gerard, and R. Inoubli, Compos. Struct., 116, 414 (2014).

    Article  Google Scholar 

  43. S. K. Bhudolia, P. Perrotey, and S. C. Joshi, Compos. Struct., 179, 502 (2017).

    Article  Google Scholar 

  44. G. Giannakopoulos, K. Masania, and A. C. Taylor, J. Mater. Sci., 46, 327 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support from the Institute for Sports Research, Nanyang Technological University, Singapore. Authors would like to thank Arkema France for providing Elium resin as a part of collaborative projects with Institute for Sports Research, Nanyang Technological University, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somen K. Bhudolia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhudolia, S.K., Gohel, G., Joshi, S.C. et al. Manufacturing Optimization and Experimental Investigation of Ex-situ Core-shell Particles Toughened Carbon/Elium® Thermoplastic Composites. Fibers Polym 22, 1693–1703 (2021). https://doi.org/10.1007/s12221-021-0819-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0819-y

Keywords

Navigation