Skip to main content
Log in

Understanding the Effect of Halloysite Nanotubes Addition Upon the Mechanical Properties of Glass Fiber Aluminum Laminate

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The influence of different wt. % of halloysite nanotubes (HNTs) on the mechanical properties of glass laminate aluminum reinforced epoxy (GLARE) was explored. GLARE (3/2) with quasi-isotropic lay-up, [Al/[(0°/90°)/(45°/−45°)]s/Al/[(0°/90°)/(45°/−45°)]s/Al] filled with 0, 0.25, 0.5, 1, 2 and 3 wt. % of HNTs was fabricated using hand lay-up followed by compression molding. Tensile, flexural, in-plane shear, interlaminar shear, bearing and impact tests were conducted. Results revealed that the maximum effect on the studied mechanical properties was obtained at 1 wt. % of HNTs. Further increase in HNTs wt. % reduces the trend. The tensile, flexural, in-plane shear and interlaminar shear properties of GLARE filled with 3 wt. % of HNTs were lower compared with original GLARE. But the bearing strength and impact strength are still higher. To examine the fracture mechanism, scanning electron microscope (SEM) images were taken. Field emission scanning electron microscope (FE-SEM) and energy-dispersive X-ray spectroscopy (EDX) were used to show the chemical composition of the studied samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vlot, “Glare”, Kluwer Academic Publishers, 2001.

  2. G. B. Chai and P. Manikandan, Compos. Struct., 107, 363 (2014).

    Article  Google Scholar 

  3. S. E. Moussavi-Torshizi, S. Dariushi, M. Sadighi, and P. Safarpour, Mater. Sci. Eng.: A, 527, 4920 (2010).

    Article  Google Scholar 

  4. T. Sinmazçelik, E. Avcu, M. Bora, and O. Çoban, Mater. Des., 32, 3671 (2011).

    Article  Google Scholar 

  5. J. Fan, W. J. Cantwell, and Z. W. Guan, J. Reinf. Plast. Compos., 30, 26 (2011).

    Article  CAS  Google Scholar 

  6. J. G. Carrillo and W. J. Cantwell, Compos. Sci. Technol., 67, 1684 (2007).

    Article  CAS  Google Scholar 

  7. G. Lawcock, L. Ye, Y. W. Mai, and C. T. Sun, Compos. Sci. Technol., 57, 35 (1997).

    Article  CAS  Google Scholar 

  8. X. Zhang, Q. Ma, Y. Dai, F. Hu, G. Liu, Z. Xu, G. Wei, T. Xu, Q. Zeng, and W. Xie, Appl. Surf. Sci., 427, 897 (2018).

    Article  CAS  Google Scholar 

  9. M. Hagenbeek, B. Muller, and J. Sinke, Adv. Eng. Mater., 21, 1800084 (2019).

    Article  Google Scholar 

  10. V. V. Silberschmidt, “Dynamic Deformation, Damage and Fracture in Composite Materials and Structures”, 1st ed., pp.495–501, Woodhead Publishing, Duxford, Cambridge, 2016.

    Google Scholar 

  11. S. Liu, L. Lang, E. Sherkatghanad, Y. Wang, and W. Xu, Appl. Compos. Mater., 25, 255 (2018).

    Article  Google Scholar 

  12. H. Ning, Y. Li, N. Hu, M. Arai, N. Takizawa, Y. Liu, L. Wu, J. Li, and F. Mo, J. Mater. Process. Technol., 216, 79 (2015).

    Article  CAS  Google Scholar 

  13. X. Li, X. Zhang, H. Zhang, J. Yang, A. B. Nia, and G. B. Chai, Compos. Struct., 163, 21 (2017).

    Article  Google Scholar 

  14. A. Z. Zakaria, K. Shelesh-nezhad, T. N. Chakherlou, and A. Olad, Eng. Fract. Mech., 172, 139 (2017).

    Article  Google Scholar 

  15. A. Abdi, R. Eslami-Farsani, and H. Khosravi, Fiber. Polym., 19, 635 (2018).

    Article  CAS  Google Scholar 

  16. H. Khosravi and R. Eslami-Farsani, Polym. Compos., 39, E677 (2018).

    Article  CAS  Google Scholar 

  17. A. Mirzapour, M. H. Asadollahi, S. Baghshaei, and M. Akbari, Compos. Pt. A-Appl. Sci. Manuf., 63, 159 (2014).

    Article  CAS  Google Scholar 

  18. J. L. Tsai, B. H. Huang, and Y. L. Cheng, Procedia Eng., 14, 1982 (2011).

    Article  CAS  Google Scholar 

  19. J. Li, C. Peng, Z. Li, Z. Wu, and S. Li, RSCAdv., 6, 61393 (2016).

    CAS  Google Scholar 

  20. H. Zhang, S. W. Gn, J. An, Y. Xiang, and J. L. Yang, Experimental Mech., 54, 83 (2014).

    Article  Google Scholar 

  21. M. Shifa, F. Tariq, and R. A. Baloch, In Key Eng. Mater., 778, 100 (2018).

    Article  Google Scholar 

  22. H. Khoramishad, H. Alikhani, and S. Dariushi, Compos. Struct., 201, 561 (2018).

    Article  Google Scholar 

  23. H. Aghamohammadi, R. Eslami-Farsani, and A. Tcharkhtchi, Int. J. Adhes. Adhes., 98, 102538 (2020).

    Article  CAS  Google Scholar 

  24. F. Bahari-Sambran, R. Eslami-Farsani, and S. Arbab Chirani, J. Sandwich Struct. Mater., 1099636218792693 (2018).

  25. F. Bahari-Sambran, J. Meuchelboeck, E. Kazemi-Khasragh, R. Eslami-Farsani, and S. A. Chirani, Thin-Walled Struct., 144, 106343 (2019).

    Article  Google Scholar 

  26. M. Najafi, A. Darvizeh, and R. Ansari, Fiber. Polym., 19, 1956 (2018).

    Article  CAS  Google Scholar 

  27. M. Megahed, M. A. Abd El-baky, A. M. Alsaeedy, and A. E. Alshorbagy, Compos. Pt. B: Eng., 176, 107277 (2019).

    Article  CAS  Google Scholar 

  28. M. Megahed, M. A. Abd El-baky, A. M. Alsaeedy, and A. E. Alshorbagy, Fiber. Polym., 21, 840 (2020).

    Article  CAS  Google Scholar 

  29. E. V. Prasad, C. Sivateja, and S. K. Sahu, Polym. Test., 85, 106441 (2020).

    Article  CAS  Google Scholar 

  30. K. Logesh and V. B. Raja, The Int. J. Adv. Manuf. Technol., 104, 3267 (2019).

    Article  Google Scholar 

  31. H. Rahmani, R. Eslami-Farsani, and H. Ebrahimnezhad-Khaljiri, Fiber. Polym., 21, 170 (2020).

    Article  CAS  Google Scholar 

  32. M. Du, B. Guo, and D. Jia, Eur. Polym. J., 42, 1362 (2006).

    Article  CAS  Google Scholar 

  33. Y. Ye, H. Chen, J. Wu, and L. Ye, Polymer, 48, 6426 (2007).

    Article  CAS  Google Scholar 

  34. S. Deng, J. Zhang, L. Ye, and J. Wu, Polymer, 49, 5119 (2008).

    Article  CAS  Google Scholar 

  35. K. Prashantha, M. F. Lacrampe, and P. Krawczak, Express Polym. Lett., 5, 295 (2011).

    Article  CAS  Google Scholar 

  36. Y. Lin, K. M. Ng, C. M. Chan, G. Sun, and J. Wu, J. Colloid. Interface Sci., 358, 423 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. P. Sun, G. Liu, D. Lv, X. Dong, J. Wu, and D. Wang, J. Appl. Polym. Sci., 133, 43209 (2016).

    Google Scholar 

  38. M. R. Loos, L. A. F. Coelho, S. H. Pezzin, and S. C. Amico, Polímeros, 18, 76 (2008).

    Article  CAS  Google Scholar 

  39. R. G. de Villoria, P. Hallander, L. Ydrefors, P. Nordin, and B. L. Wardle, Compos. Sci. Technol., 133, 33 (2016).

    Article  Google Scholar 

  40. E. Sadeghpour, M. Sadighi, and S. Dariushi, J. Reinf. Plast. Compos., 32, 1143 (2013).

    Article  CAS  Google Scholar 

  41. ASTM D3039, ASTM International, West Conshohocken, PA, www.astm.org, 2000.

  42. JIS K7055, “Testing Method for Flexural Properties of Glass Fiber Reinforced Plastics”, 1987.

  43. ASTM D 5379/D 5379M, ASTM International, West Conshohocken, 1998.

  44. ASTM D2344, ASTM International, West Conshohocken, PA, www.astm.org, 1984.

  45. ASTM D5961/D5961M, ASTM International, West Conshohocken, PA, www.astm.org, 2017.

  46. ISO 180, European Standards, Switzerland, 3rd Ed., 2000.

  47. M. H. Wichmann, J. Sumfleth, F. H. Gojny, M. Quaresimin, B. Fiedler, and K. Schulte, Eng. Fract. Mechanics, 73, 2346 (2006).

    Article  Google Scholar 

  48. A. Anand, R. Harshe, and M. Joshi, J. Compos. Mater., 47, 2937 (2013).

    Article  CAS  Google Scholar 

  49. M. A. Ashraf, W. Peng, Y. Zare, and K. Y. Rhee, Nanoscale Res. Lett., 13, 214 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. H. Alamri and I. M. Low, In Proceedings of the 6th Australasian Congress on Applied Mechanics, Engineers Australia 1278, 2010.

  51. H. Alamri and I. M. Low, Polym. Compos., 33, 589 (2012).

    Article  CAS  Google Scholar 

  52. L. L. Zhai, G. P. Ling, and Y. W. Wang, Int. J. Adhesion Adhesiv., 28, 23 (2008).

    Article  CAS  Google Scholar 

  53. B. Qi, Q. X. Zhang, M. Bannister, and Y. W. Mai, Compos. Struct., 75, 514 (2006).

    Article  Google Scholar 

  54. Y. Xu and S. Van Hoa, Compos. Sci. Techno., 68, 854 (2008).

    Article  CAS  Google Scholar 

  55. K. L. Kuzmin, I. A. Timoshkin, S. I. Gutnikov, E. S. Zhukovskaya, Y. V. Lipatov, and B. I. Lazoryak, Compos. Interface, 24, 13 (2017).

    Article  CAS  Google Scholar 

  56. Y. Tian, H. Zhang, and Z. Zhang, Compos. Pt. A: Appl. Sci. Manufact., 98, 1 (2017).

    Article  CAS  Google Scholar 

  57. M. Hussain, A. Nakahira, and K. Niihara, Mater. Lett., 26, 185 (1996).

    Article  CAS  Google Scholar 

  58. Y. Ye, H. Chen, J. Wu, and C. M. Chan, Compos. Pt. B: Eng., 42, 2145 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa A. Abd El-baky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melaibari, A.A., Attia, M.A. & Abd El-baky, M.A. Understanding the Effect of Halloysite Nanotubes Addition Upon the Mechanical Properties of Glass Fiber Aluminum Laminate. Fibers Polym 22, 1416–1433 (2021). https://doi.org/10.1007/s12221-021-0656-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0656-z

Keywords

Navigation