Skip to main content
Log in

Processing and Tensile Properties of Twisted Core-Shell Yarns Fabricated by Double Nozzle Electrospinning Device

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, a double nozzle electrospinning device consisting of a take-up/twister unit applied to develop core-shell structured nanofibrous yarns with potential applications in the production of functional textile materials. The process was performed by introducing a pre-electrospun core yarn into the electrical field between two oppositely charged nozzles, where nanofibers cover it by a certain arrangement owning to the twisting procedure. Herein, the main goal was to investigate how the core and shell structures influenced by process parameters, can contribute to the ultimate mechanical properties of the electrospun core-shell yarn. Accordingly, the same solution of nylon 66/formic acid was used for electrospinning of both core and shell nanofibers. The response surface methodology (RSM) was applied to study the effect of twisting rate, take-up speed, and twist amount of core yarn (called pre-twist) on the morphological and tensile properties of electrospun core-shell yarns. SEM images confirmed that the nanofibers were assembled surround the core with a certain angle to the axis to form a twisted core-shell yarn. The take-up speed caused considerable effects on the yarn diameter by changing the number of fibers formed in the triangle zone of the electrospinning process. The diameter of the core-shell yarns decreased significantly by increasing the twist rate and take-up speed. Improvements in tensile stress were generally realized at low twist levels and higher take-up speeds. The contribution of the core on the mechanical behavior of core-shell yarn was also considered in detail. The electrospun core-shell yarns showed superior (∼37 %) max stress when using a core yarn with low pre-twist amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. McCarthy in “Handbook of Technical Textiles”, 2nd ed. (A. R. Horrocksand S. C. Anand Eds.), pp.1–20, Woodhead Publishing, 2016.

  2. I. Gehrke, V. Tenner, V. Lutz, D. Schmelzeisen, T. Gries, “Smart Textiles Production: Overview of Materials, Sensor and Production Technologies for Industrial Smart Textiles”, MDPI, 2019.

  3. N. Korkmaz Memiş, G. Kayabaşı, and D. Yılmaz, J. Ind. Text., 48, 1462 (2018).

    Article  Google Scholar 

  4. Z. Pei, Y. Zhang, and G. Chen, Text. Res. J., 89, 113 (2017).

    Article  Google Scholar 

  5. W. Li, C. Xu, X. Ren, Y. Xue, J. Zhao, Q. Li, and X. Zhang, Compos. Commun., 19, 127 (2020).

    Article  CAS  Google Scholar 

  6. Z. Pei and J. He, Text. Res. J., 89, 4383 (2019).

    Article  CAS  Google Scholar 

  7. N. Yıldırım, E. Sarıoğlu, and H. G. Türksoy, J. Nat. Fibers., doi: https://doi.org/10.1080/15440478.2019.1623748 (2019).

  8. M. B. Bazbouz and G. K. Stylios, J. Appl. Polym. Sci., 124, 195 (2012).

    Article  CAS  Google Scholar 

  9. E. C. Doran and C. Sahin, Text. Res. J., 90, 1558 (2019).

    Article  Google Scholar 

  10. A. A. Almetwally, H. M. F. Idrees, and A. A. Hebeish, J. Text. Inst., 105, 1221 (2014).

    Article  CAS  Google Scholar 

  11. S. Asghari Mooneghi, A. A. Gharehaghaji, H. Hosseini-Toudeshky, and G. Torkaman, J. Appl. Polym. Sci., 136, 47206 (2019).

    Article  Google Scholar 

  12. K. Qi, H. Wang, X. You, X. Tao, M. Li, Y. Zhou, Y. Zhang, J. He, W. Shao, and S. Cui, J. Colloid Interface Sci., 561, 93 (2020).

    Article  CAS  Google Scholar 

  13. Y. Zhou, H. Wang, J. He, K. Qi, and B. Ding, Mater. Lett., 239, 1 (2019).

    Article  CAS  Google Scholar 

  14. C. R. Frank and J. Samuel, J. Appl. Polym. Sci., 133, 43747 (2016).

    Article  Google Scholar 

  15. J. He, Y. Zhou, L. Wang, R. Liu, K. Qi, and S. Cui, Fiber. Polym., 15, 2061 (2014).

    Article  CAS  Google Scholar 

  16. F. Dabirian, S. A. H. Ravandi, J. P. Hinestroza, and R. A. Abuzade, Polym. Eng. Sci., 52, 1724 (2012).

    Article  CAS  Google Scholar 

  17. H. Maleki, A. A. Gharehaghaji, L. Moroni, and P. J. Dijkstra, Biofabrication., 5, 035014 (2013).

    Article  CAS  Google Scholar 

  18. H. Maleki, A. A. Gharehaghaji, G. Criscenti, L. Moroni, and P. J. Dijkstra, J. Appl. Polym. Sci., 132, 41388 (2015).

    Article  Google Scholar 

  19. H. Maleki, A. A. Gharehaghaji, and P. J. Dijkstra, J. Mech. Behav. Biomed. Mater., 71, 231 (2017).

    Article  CAS  Google Scholar 

  20. R. Semnani Rahbar, H. Maleki, and B. Kalantari, J. Exp. Nanosci., 11, 1402 (2016).

    Article  CAS  Google Scholar 

  21. H. Maleki, A. A. Gharehaghaji, T. Toliyat, and P. J. Dijkstra, Biofabrication., 8, 35019 (2016).

    Article  CAS  Google Scholar 

  22. F. Hajiani, A. Jeddi, and A. A. Gharehaghaji, Fiber. Polym., 13, 244 (2012).

    Article  CAS  Google Scholar 

  23. A. S. Levitt, C. E. Knittel, R. Vallett, M. Koerner, G. Dion, and C. L. Schauer, J. Appl. Polym. Sci., 134, 1 (2017).

    Article  Google Scholar 

  24. H. Maleki and H. Barani, Polym. Eng. Sci., 58, 1091 (2018).

    Article  CAS  Google Scholar 

  25. A. Fakhrali, S. V. Ebadi, A. A. Gharehaghaji, M. Latifi, and A. Moghassem, E-Polymers, 16, 125 (2016).

    Article  CAS  Google Scholar 

  26. J. H. Lee, Y. Gim, S. Bae, C. Oh, H. S. Ko, S. Baik, T. S. Oh, and J. B. Yoo, J. Appl. Polym. Sci., 134, 45528 (2017).

    Article  Google Scholar 

  27. H. W. Yang, H. J. Kim, C. Y. Zhu, and Y. Huh, Text. Res. J., 79, 453 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homa Maleki.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, H., Semnani Rahbar, R. Processing and Tensile Properties of Twisted Core-Shell Yarns Fabricated by Double Nozzle Electrospinning Device. Fibers Polym 22, 1256–1265 (2021). https://doi.org/10.1007/s12221-021-0572-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0572-2

Keywords

Navigation