Skip to main content
Log in

Morphological Conversion to Aligned Electrospun Fibers through the Enhancement of Electric Field Caused by Addition of Silver Nitrate

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Aligned electrospun fibers have always been obtained through various physical methods such as collector replacement or collecting acceleration. However, that faces a huge challenge for experimental complexity and risk. Here, adding a small amount of silver nitrate into electrospun solutions was confirmed as an effective approach that could change the final morphology of electrospun fibers to be aligned. Experiments had proved that electrospun fibers which were usually chaotic and disorderly at 500 rpm tend to form extremely aligned fibers after adding 0.1 wt% of silver nitrate. This conversion was considered that caused by the addition of silver nitrate which increases the conductivity of the electrospun solution and causes the mutual electric field to change during the spinning process. It turned the behavior of electrospinning in a twisting angle, which was originally disordered, into the result of cluster electrospinning. This method was expected to generate far-reaching significance for the development of aligned electrospun fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Sedghi, M. R. Nabid, M. Shariati, M. Behbahani, and H. R. Moazzami, Fiber. Polym., 17, 1969 (2016).

    Article  CAS  Google Scholar 

  2. C. Della Pina, C. Busacca, P. Frontera, P. L. Antonucci, A. L. Scarpino, A. Sironi, and E. Falletta, J. Nanosci. Nanotechnol., 16, 5369 (2016).

    Article  CAS  Google Scholar 

  3. B. C. Filiz and A. K. Figen, Int. J. Hydrogen Energ, 44, 9883 (2019).

    Article  CAS  Google Scholar 

  4. J. Doshi and D. H. Reneker, J. Electrostat., 35, 151 (1995).

    Article  CAS  Google Scholar 

  5. D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996).

    Article  CAS  Google Scholar 

  6. J. H. Zhang, Y. Li, J. H. Du, X. H. Hao, and Q. Wang, Nano Energy, 61, 486 (2019).

    Article  CAS  Google Scholar 

  7. S. Fujita, Y. Wakuda, M. Matsumura, and S. I. Suye, J. Mater. Chem. B, 7, 6556 (2019).

    Article  CAS  Google Scholar 

  8. O. Batnyam, H. Shimizu, K. Saito, T. Ishida, S. Suye, and S. Fujita, RSC Adv., 5, 80357 (2015).

    Article  CAS  Google Scholar 

  9. L. Persano, C. Dagdeviren, Y. W. Su, Y. H. Zhang, S. Girardo, D. Pisignano, Y. G. Huang, and J. Rogers, Nat. Commun., 4, 1633 (2013).

    Article  CAS  Google Scholar 

  10. S. Y. Chew, J. Wen, E. K. F. Yim, and K. W. Leong, Biomacromolecules, 6, 2017 (2005).

    Article  CAS  Google Scholar 

  11. J. Rafique, J. Yu, J. Yu, G. Fang, K. W. Wong, Z. Zheng, H. C. Ong, and W. M. Lau, Appl. Phys. Lett., 91, 063126 (2007).

    Article  CAS  Google Scholar 

  12. P. Katta, M. Alessandro, R. D. Ramsier, and G. G. Chase, Nano Lett., 4, 2215 (2004).

    Article  CAS  Google Scholar 

  13. T. P. Lei, Z. J. Xu, X. M. Cai, L. Xu, and D. H. Sun, Langmuir, 34, 13788 (2018).

    Article  CAS  Google Scholar 

  14. D. Li, Y. L. Wang, and Y. N. Xia, Nano Lett., 3, 1167 (2003).

    Article  CAS  Google Scholar 

  15. T. P. Lei, Q. Q. Peng, Q. P. Chen, J. Y. Xiong, F. Zhang, and D. H. Sun, Mater. Lett., 193, 248 (2017).

    Article  CAS  Google Scholar 

  16. M. Khamforoush and M. Mahjob, Mater. Lett., 65, 453 (2011).

    Article  CAS  Google Scholar 

  17. X. M. Cai, P. Zhu, X. Z. Lu, Y. F. Liu, T. P. Lei, and D. H. Sun, J. Mater. Sci., 52, 14004 (2017).

    Article  CAS  Google Scholar 

  18. D. Edmondson, A. Cooper, S. Jana, D. Wood, and M. Q. Zhang, J. Mater. Chem., 22, 18646 (2012).

    Article  CAS  Google Scholar 

  19. E. Cho, C. Kim, J. K. Kook, Y. I. Jeong, J. H. Kim, Y. A. Kim, M. Endo, and C. H. Hwang, J. Membr. Sci., 389, 349 (2012).

    Article  CAS  Google Scholar 

  20. S. E. Park, G. B. Yeon, H. G. Goo, D. S. Seo, A. A. Dayem, K. E. Lee, H. M. Park, S. G. Cho, and D. S. Kim, J. Cell Physiol., 236, 3510 (2020).

    Article  CAS  Google Scholar 

  21. K. T. Chu, Y. Oshida, E. B. Hancock, M. J. Kowolik, T. Barco, and S. L. Zunt, Bio-Med Mater. Eng., 14, 87 (2004).

    CAS  Google Scholar 

  22. A. Alrifaiy, O. A. Lindahl, and K. Ramser, Polymers-Basel, 4, 1349 (2012).

    Article  CAS  Google Scholar 

  23. A. Haider, S. Haider, and I. K. Kang, Arab. J. Chem., 11, 1165 (2018).

    Article  CAS  Google Scholar 

  24. J. J. Xue, T. Wu, Y. Q. Dai, and Y. N. Xia, Chem. Rev., 119, 5298 (2019).

    Article  CAS  Google Scholar 

  25. X. M. Cai, T. P. Lei, D. H. Sun, and L. W. Lin, RSC Adv., 7, 15382 (2017).

    Article  CAS  Google Scholar 

  26. F. Gaston, N. Dupuy, S. R. A. Marque, M. Barbaroux, and S. Dorey, Polym. Degrad. Stabil., 129, 19 (2016).

    Article  CAS  Google Scholar 

  27. F. J. Tommasini, L. D. C. Ferreira, L. G. P. Tienne, V. D. Aguiar, M. H. P. da Silva, L. F. D. Rocha, and M. D. V. Marques, Mater Res-Ibero-Am J., 21, e20180086 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sakamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Sakamoto, H., Takamura, E. et al. Morphological Conversion to Aligned Electrospun Fibers through the Enhancement of Electric Field Caused by Addition of Silver Nitrate. Fibers Polym 22, 3068–3074 (2021). https://doi.org/10.1007/s12221-021-0434-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0434-y

Keywords

Navigation