Skip to main content
Log in

The Superhydrophobic State Stability of Coatings Based on Copolymers of Glycidyl Methacrylate and Alkyl Methacrylates on Cotton Fabric Surface

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

We suggest a simple and reproducible strategy for fabricating durable superhydrophobic coatings on the basis of series of functional random copolymers of alkyl methacrylates and glycidyl methacrylate on cotton fabric surface. The procedure consists of the fabric treatment by solutions of copolymers in methylethylketone and following heating at 140 °C. The initial contact angles of obtained coatings on fabric surface achieve 165°. The dependence of superhydrophobic properties of coatings based on copolymers of glycidyl methacrylate and alkyl (meth)acrylates (with alkyl radicals С4–С18 in side chains) attached to the cotton fabric surface was studied. The comparative analysis of superhydrophobic state stability of polymer coatings during long-term contacts with aggressive media is presented. We evaluated the contact angles stability as a function of prolonged contact of polymer coatings with water under saturated vapor conditions, organic solvents, and synthetic detergents. Polymeric coatings based on a copolymer of lauryl methacrylate (С12) and glycidyl methacrylate provide better stability of superhydrophobic properties compared with other copolymers of alkyl methacrylates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Li, J. Huang, Z. Chen, G. Chena, and Y. Lai, J. Mater. Chem. A, 5, 31 (2017).

    Article  CAS  Google Scholar 

  2. J. T. Simpson, S. R. Hunter, and T. Aytug, Rep. Prog. Phys., 78, 086501 (2015).

    Article  Google Scholar 

  3. B. Bhushan and Y. C. Jung, Prog. Mater. Sci., 56, 1 (2011).

    Article  CAS  Google Scholar 

  4. G. Wen, Z. Guo, and W. Liu, Nanoscale, 9, 3338 (2017).

    Article  CAS  Google Scholar 

  5. D. Quere, Annu. Rev. Mater. Res., 38, 71 (2008).

    Article  CAS  Google Scholar 

  6. L. B. Boinovich and A. M. Emelyanenko, Russ. Chem. Rev., 77, 583 (2008).

    Article  CAS  Google Scholar 

  7. H. Liu, S. W. Gao, J. S. Cai, C. L. He, J. J. Mao, T. X. Zhu, Z. Chen, J. Y. Huang, K. Meng, K. Q. Zhang, S. S. Al-Deyab, and Y. K. Lai, Materials, 9, 124 (2016).

    Article  Google Scholar 

  8. H. Teisala, M. Tuominen, and J. Kuusipalo, Adv. Mater. Interfaces, 1, 1300026 (2014).

    Article  Google Scholar 

  9. J. Vasiljevic, M. Gorjanc, B. Tomsic, B. Orel, I. Jerman, M. Mozetic, and B. Simoncic, Cellulose, 20, 277 (2013).

    Article  CAS  Google Scholar 

  10. F. Liu, M. Ma, D. Zang, Z. Gao, and C. Wang, Carbohydr. Polym., 103, 480 (2014).

    Article  CAS  Google Scholar 

  11. P. Samyn, J. Mater. Sci., 48, 6455 (2013).

    Article  CAS  Google Scholar 

  12. B. Cortese, D. Caschera, G. Padeletti, G. M. Ingo, and G. Gigli, Surf. Innov., 1, 140 (2013).

    Article  CAS  Google Scholar 

  13. M. Shateri-Khalilabad and M. E. Yazdanshenas, J. Text. Inst., 104, 861 (2013).

    Article  CAS  Google Scholar 

  14. R. H. Kollarigowda, S. Abraham, and C. D. Montemagno, ACS Appl. Mater. Interfaces, 9, 29812 (2017).

    Article  CAS  Google Scholar 

  15. J. Zhang, B. Li, L. Wu, and A. Wang, Chem. Commun., 49, 11509 (2013).

    Article  CAS  Google Scholar 

  16. C.-H. Xue, Q.-Q. Fan, X.-J. Guo, Q.-F. An, and S.-T. Jia, Appl. Surf. Sci., 465, 241 (2019).

    Article  CAS  Google Scholar 

  17. G. H. Xi, W. C. Fan, L. Wang, X. D. Liu, and T. Endo, J. Polym. Sci. A, 53, 1862 (2015).

    Article  CAS  Google Scholar 

  18. C. Jiang, W. Liu, M. Yang, F. Zhang, H. Shi, Y. Xie, and Z. Wang, J. Mater. Sci., 54, 7369 (2019).

    Article  CAS  Google Scholar 

  19. H. Zou, S. Lin, Y. Tu, G. Liu, J. Hu, F. Li, L. Miao, G. Zhang, H. Luo, F. Liu, C. Hou, and M. Hu, J. Mater. Chem. A, 1, 11246 (2013).

    Article  CAS  Google Scholar 

  20. E. V. Bryuzgin, V. V. Klimov, M. D. Le, T. H. Nguyen, A. V. Navrotskiy, and I. A. Novakov, Surf. Innov., 5, 147 (2017).

    Article  Google Scholar 

  21. E. V. Bryuzgin, V. V. Klimov, E. I. Bologova, A. V. Navrotskii, and I. A. Novakov, Prot. Met. Phys. Chem. Surf., 53, 248 (2017).

    Article  CAS  Google Scholar 

  22. V. V. Klimov, E. V. Bryuzgin, M. D. Le, E. A. Zelenova, T. H. Nguyen, A. V. Navrotskii, H. Nishide, and I. A. Novakov, Polym. Sci. Ser. D, 9, 364 (2016).

    Article  CAS  Google Scholar 

  23. Y. Wang, X. Wang, L. O. Heim, H. Breitzke, G. Buntkowsky, and K. Zhang, Cellulosе, 22, 289 (2015).

    Article  CAS  Google Scholar 

  24. Y. Li, Y. Zhang, C. Zou, and J. Shao, Appl. Surf. Sci., 357, 2327 (2015).

    Article  CAS  Google Scholar 

  25. H. Zhou, Y. Zhao, H. Wang, and T. Lin, Adv. Mater. Interfaces, 3, 1600402 (2016).

    Article  Google Scholar 

  26. A. Milionis, E. Lotha, and I. Bayer, Adv. Colloid Interface Sci., 229, 57 (2016).

    Article  CAS  Google Scholar 

  27. X. Zhu, Z. Zhang, J. Yang, X. Xu, X. Men, and X. Zhou, J. Colloid Interface Sci., 15, 182 (2012).

    Article  Google Scholar 

  28. L. Boinovich, A. Emelyanenko, and A. Pashinin, ACS Appl. Mater. Interfaces, 2, 1754 (2010).

    Article  CAS  Google Scholar 

  29. A. M. Emelyanenko, F. M. Shagieva, A. G. Domantovsky, and L. B. Boinovich, Appl. Surf. Sci., 332, 513 (2015).

    Article  CAS  Google Scholar 

  30. J. Vasiljević, M. Gorjanc, I. Jerman, B. Tomšič, M. Modic, M. Mozetič, B. Orel, and B. Simončič, Fiber. Polym., 17, 695 (2016).

    Article  Google Scholar 

  31. C.-F. Wang, W.-N. Wang, C.-H. Lin, K.-J. Lee, C.-C. Hu, and J.-Y. Lai, Polymers, 11, 1183 (2019).

    Article  Google Scholar 

Download references

Acknowledgments

The research was conducted with the financial support from the Russian Science Foundation, project 16-13-10337.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Bryuzgin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryuzgin, E., Klimov, V., Le, M.D. et al. The Superhydrophobic State Stability of Coatings Based on Copolymers of Glycidyl Methacrylate and Alkyl Methacrylates on Cotton Fabric Surface. Fibers Polym 21, 1032–1038 (2020). https://doi.org/10.1007/s12221-020-9741-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9741-y

Keywords

Navigation