Skip to main content
Log in

Three Dimensional Nylon Cushioning Composite Fabrics: Manufacturing Technique and Property Evaluations

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

It is trendy to use polymers with different forms in a diversity of fields. This study uses nylon fibers and low-melting-point polyester (LMPET) fibers or low melting point polylactic acid (LMPLA) fibers to fabricate three-dimensional nylon/LMPET and nylon/LMPLA cushioning composite fabrics employing the nonwoven manufacturing. The employment of needle punching process and thermal treatment reinforce the cushioning composite fabrics, and the subsequent thermal bonding points strengthen the mechanical properties effectively. In comparison to pure nylon nonwoven fabrics, the nylon cushioning composite fabrics exhibit higher tensile strength by 2.3 times regardless of whether it is a nylon/LMPET or nylon/LMPLA cushioning composite fabric. Similarly, based on the hammer rebound rate measurement, when the 3D cushioning composite fabrics are composed of 20 wt% of LMPLA fibers or 80 wt% of LMPET fibers, the hammer rebound rate reaches 20 %, which is 1.4 times greater than that of the control group. Additionally, the composite fabrics that are composed of 80 wt% of LMPLA fibers or 40 wt% of LMPET fibers also demonstrate higher compression recovery than the control group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Büsgen in “New Product Development in Textiles” (L. Horne Ed.), p.132, Woodhead Publishing, 2012.

  2. P. R. Mantena and R. Mann, Compos. Struct., 61, 291 (2003).

    Article  Google Scholar 

  3. X. Yang, Y. Xia, and Q. Zhou, Mater. Des., 32, 1167 (2011).

    Article  CAS  Google Scholar 

  4. R. Yan, R. Wang, C.-W. Lou, S.-Y. Huang, and J.-H. Lin, Compos. Part B: Eng., 83, 253 (2015).

    Article  CAS  Google Scholar 

  5. N. Hayashi, S. V. Komarov, E. Kasai, and T. Oki, Surface Coat. Technol., 210, 151 (2012).

    Article  CAS  Google Scholar 

  6. R. H. Gong (Ed.), “Specialist Yarn and Fabric Structures”, p.264, Woodhead Publishing, 2011.

  7. L. Bautista in “Functional Finishes for Textiles” (R. Paul Ed.), p.579, Woodhead Publishing, 2015.

  8. F. Farukh, E. Demirci, B. Sabuncuoglu, M. Acar, B. Pourdeyhimi, and V. V. Silberschmidt, Comput. Mater. Sci., 64, 112 (2012).

    Article  CAS  Google Scholar 

  9. R. Yan, R. Wang, C.-W. Lou, and J.-H. Lin, Compos. Part B: Eng., 69, 58 (2015).

    Article  CAS  Google Scholar 

  10. S. J. K. Adolph in “Interior Textiles” (T. Rowe Ed.), p.47, Woodhead Publishing, 2009.

  11. R. H. Gong in “Advances in 3D Textiles” (X. Chen Ed.), p. 183, Woodhead Publishing, 2015.

  12. W. Zhang, C. Staszel, A. L. Yarin, E. Shim, and B. Pourdeyhimi, Polymer, 146, 209 (2018).

    Article  CAS  Google Scholar 

  13. P. Altay, G. Özcan, M. Tekçin, G. Sahin, and S. Çelik, Ultrasonics Sonochemistry, 42, 768 (2018).

    Article  CAS  Google Scholar 

  14. G. R. Koerner and R. M. Koerner, Geotext. Geomembr., 29, 360 (2011).

    Article  Google Scholar 

  15. X. Y. Wang, R. H. Gong, Z. Dong, and I. Porat, Wear, 262, 424 (2007).

    Article  CAS  Google Scholar 

  16. J.-H. Li, J.-C. Hsieh, C.-W. Lou, C.-T. Hsieh, Y.-J. Pan, W.-H. Hsing, and J.-H. Lin, Mater. Lett., 183, 77 (2016).

    Article  CAS  Google Scholar 

  17. G. Thilagavathi, C. Praba karan, and D. Das, J. Environ. Manag., 219, 340 (2018).

    Article  CAS  Google Scholar 

  18. G. N. Ramaswamy, T. Sellers, W. Tao, and L. G. Crook, Ind. Crops Prod., 17, 1 (2003).

    Article  CAS  Google Scholar 

  19. S. J. Lee, S. H. Oh, J. Liu, S. Soker, A. Atala, and J. J. Yoo, Biomaterials, 29, 1422 (2008).

    Article  CAS  Google Scholar 

  20. S.-Y. Huang, C.-W. Lou, R. Yan, Q. Lin, T.-T. Li, Y.-S. Chen, and J.-H. Lin, Compos. Part B: Eng., 131, 43 (2017).

    Article  CAS  Google Scholar 

  21. I. G. Crouch, L. Arnold, A. Pierlot, and H. Billon in “The Science of Armour Materials” (I. G. Crouch Ed.), p.269, Woodhead Publishing, 2017.

  22. M. E. Yüksekkaya, M. Tercan, and G. Doğan, Filtration & Separation, 47, 36 (2010).

    Article  Google Scholar 

  23. S. Farah, D. G. Anderson, and R. Langer, Adv. Drug Delivery Rev., 107, 367 (2016).

    Article  CAS  Google Scholar 

  24. N. Wu and H. Zhang, Mater. Lett., 192, 17 (2017).

    Article  CAS  Google Scholar 

  25. Z. Zhang, C. Wang, and K. Mai, Adv. Ind. Eng. Polym. Res., 2, 69 (2019).

    Article  Google Scholar 

  26. Z. Li, J. K. Muiruri, W. Thitsartarn, X. Zhang, B. H. Tan, and C. He, Compos. Sci. Technol., 159, 11 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would especially like to thank the Ministry of Science and Technology of Taiwan for financially supporting this research under Contract MOST 107-2221-E-035-052-MY3 and MOST 107-2632-E-035-001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ching-Wen Lou or Jia-Horng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jhang, JC., Lin, T.R., Chuang, YC. et al. Three Dimensional Nylon Cushioning Composite Fabrics: Manufacturing Technique and Property Evaluations. Fibers Polym 21, 671–676 (2020). https://doi.org/10.1007/s12221-020-9451-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9451-5

Keywords

Navigation