Skip to main content
Log in

Effect of the Carding Process and Reinforcement Method of Carbon Fiber/Polypropylene Fiber Nonwoven Fabrics on the Anisotropic Mechanical Properties of Hot-Pressed Composites

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this work, nonwoven fabrics made from carbon fibers (CFs) and polypropylene (PP) fibers were manufactured through a carding process and a cross-laying process and reinforced by either a needle punching method or a thermobonding method. The effects of the carding parameters (adding oil, increasing the gauge and decelerating the speed) and reinforcement method (needle punching method or thermobonding method) on the anisotropic mechanical properties of hot-pressed CF/PP composites were investigated. Additionally, the length, distribution and orientation of carbon fibers in the hot-pressed composites were studied. The carbon fibers were oriented by the carding method, and the composites exhibited anisotropic properties. Moreover, the fiber distribution results indicated that increasing the gauge and decelerating the speed had a slightly negative influence on the distribution of carbon fibers and that the cross-laying process led to a uniform distribution of fibers. Furthermore, adjusting the carding parameters and reinforcement method could reduce the damage sustained by carbon fibers during manufacturing and subsequently improve the mechanical properties of the CF/PP composites in the transverse direction (TD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ma, T. Yokozeki, M. Ueda, T. Sugahara, Y. Yang, and H. Hamada, Compos. Sci. Technol., 151, 268 (2017).

    Article  CAS  Google Scholar 

  2. A. A. Azeez, K. Y. Rhee, S. J. Park, and D. Hui, Compos. Part B-Eng., 45, 308 (2013).

    Article  CAS  Google Scholar 

  3. Y. Ma, Y. Zhang, T. Sugahara, S. Jin, Y. Yang, and H. Hamada, Compos. Part A-Appl. Sci. Manuf., 90, 711 (2016).

    Article  CAS  Google Scholar 

  4. Y. Ma, Y. Yang, T. Sugahara, and H. Hamada, Compos. Part B-Eng., 99, 162 (2016).

    Article  CAS  Google Scholar 

  5. H. Ma, Z. Jia, K. Lau, J. Leng, and D. Hui, Compos. Part B-Eng., 92, 210 (2016).

    Article  CAS  Google Scholar 

  6. Y. Ma, T. Sugahara, Y. Yang, and H. Hamada, Compos. Struct., 123, 301 (2015).

    Article  Google Scholar 

  7. F. Rezaei, R. Yunus, and N. Ibrahim, Mater. Des., 30, 260 (2009).

    Article  CAS  Google Scholar 

  8. K. Toba, Y. Kondo, M. Harada, A. Nagura, T. Miyake, and Y. Takada, Trans. Mater. Res. Soc. Japan, 41, 135 (2016).

    Article  CAS  Google Scholar 

  9. N. Hirano, H. Muramatsu, and T. Inoue, Adv. Compos. Mater., 23, 151 (2014).

    Article  CAS  Google Scholar 

  10. K. Wong, D. S. Mohammed, S. Pickering, and R. Brooks, Compos. Sci. Technol., 72, 835 (2012).

    Article  CAS  Google Scholar 

  11. S. J. Pickering, Compos. Part A-Appl. Sci. Manuf., 37, 1206 (2006).

    Article  Google Scholar 

  12. Y. Ma, M. Ueda, T. Yokozeki, T. Sugahara, Y. Yang, and H. Hamada, Compos. Struct., 160, 89 (2017).

    Article  Google Scholar 

  13. S. Fu and B. Lauke, Compos. Sci. Technol., 56, 1179 (1996).

    Article  CAS  Google Scholar 

  14. R. Wongpajan, S. Mathurosemontri, R. Takematsu, H. Y. Xu, P. Uawongsuwan, S. Thumsorn, and H. Hamada, Energy Procedia, 89, 328 (2016).

    Article  CAS  Google Scholar 

  15. J. Hearle and P. Stevenson, Text. Res. J., 33, 877 (1963).

    Article  Google Scholar 

  16. C. Unterweger, J. Duchoslav, D. Stifter, and C. Fürst, Compos. Sci. Technol., 108, 41 (2015).

    Article  CAS  Google Scholar 

  17. J. Park, S. T. Quang, B. Hwang, and K. L. DeVries, Compos. Sci. Technol., 66, 2686 (2006).

    Article  CAS  Google Scholar 

  18. S. Torigoe, T. Horikoshi, A. Ogawa, T. Saito, and T. Hamada, J. Adv. Concrete Technol., 1, 265 (2003).

    Article  Google Scholar 

  19. J. Zhou, S. Qian, G. Ye, O. Copuroglu, K. van Breugel, and V. C. Li, Cement Concr. Compos., 34, 342 (2012).

    Article  CAS  Google Scholar 

  20. Y. Ma, M. Ueda, T. Yokozeki, T. Sugahara, Y. Yang, and H. Hamada, Open J. Compos. Mater., 7, 227 (2017).

    Article  CAS  Google Scholar 

  21. D. Das, S. Ishtiaque, and P. Dixit, J. Text. Inst., 103, 676 (2012).

    Article  CAS  Google Scholar 

  22. W. Weibull, J. Appl. Mech., 18, 293 (1951).

    Google Scholar 

Download references

Acknowledgments

The authors thank Yuho Co., Ltd., Japan for manufacturing the nonwoven fabrics. Additionally, the work was supported under the State Scholarship Fund of the China Scholarship Council (No. 201806630113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Defang Zhao, Ruohua Liu or Yuqiu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Matsushita, M., Yang, Y. et al. Effect of the Carding Process and Reinforcement Method of Carbon Fiber/Polypropylene Fiber Nonwoven Fabrics on the Anisotropic Mechanical Properties of Hot-Pressed Composites. Fibers Polym 21, 1115–1125 (2020). https://doi.org/10.1007/s12221-020-9622-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9622-4

Keywords

Navigation