Skip to main content
Log in

Influence of Poly(lactic acid) Layer on the Physical and Antibacterial Properties of Dry Bacterial Cellulose Sheet for Potential Acute Wound Healing Materials

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Dry bacterial cellulose nanofiber (BC) sheet coated with poly(lactic acid) (PLA) was developed and characterized towards acute wound healing applications. This new approach of PLA coating on BC revealed enhanced physical and antibacterial properties. Commercial BC sheets originated from the manufacturing of nata de coco jelly were dried and coated with the PLA at various concentrations of 2, 4, 6, 8, 10 and 12 % w/v for the purpose of improving the mechanical properties and followed by loading of antiseptic such as benzalkonium chloride (BAC). PLA has been proposed for the use of coating materials at a concentration of 8 %, the biocomposite sheet started exhibiting a low moisture uptake, prolonged swelling in simulated wound fluid solution and high tear (9.17 Nm2/kg) and burst indices (32.5 kPa·m2/g). The 8 % PLA coating revealed porous fiber-like morphology as observed under scanning electron microscope. Therapeutic loading capacity of the BC/8 PLA was substantially higher than the pristine BC. Furthermore strong antimicrobial activities against Staphylococcus aureaus and Escherichia coli were observed for the BC/8PLA biocomposite film. These reports were clearly suggestive of the fact that synthetic biodegradable polymers, such as PLA, may be exploited for the synergistic combination with BC for antimicrobial and acute wound management. This new and modified fiber source material could reduce the dependency on plant based cellulose for more demanding biomedical applications such as wound healing materials, vascular graft, cartilage replacement, drug delivery and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Römling, Res. Microbiol., 153, 205 (2002).

    Article  Google Scholar 

  2. J. K. Park, Y. H. Park, and J. Y. Jung, Biotechnol. Bioproc. Eng., 8, 83 (2003).

    Article  CAS  Google Scholar 

  3. R. C. Sun, BioResources, 4, 452 (2009).

    CAS  Google Scholar 

  4. M. S. Dayal and J. M. Catchmark, Carbohydr. Polym., 144, 447 (2016).

    Article  CAS  Google Scholar 

  5. M. W. Ullah, M. Ul-Islam, S. Khan, Y. Kim, and J. K. Park, Carbohydr. Polym., 136, 908 (2016).

    Article  CAS  Google Scholar 

  6. M. W. Ullah, M. Ul-Islam, S. Khan, Y. Kim, and J. K. Park, Carbohydr. Polym., 132, 286 (2015).

    Article  CAS  Google Scholar 

  7. A. M. A. Gallegos, S. H. Carrera, R. Parra, T. Keshavarz, and H. M. Iqbal, Bioresources, 11, 5641 (2016).

    Article  CAS  Google Scholar 

  8. E. E. Brown, M. P. G. Laborie, and J. Zhang, Cellulose, 19, 127 (2012).

    Article  CAS  Google Scholar 

  9. M. Zaborowska, A. Bodin, H. Bäckdahl, J. Popp, A. Goldstein, and P. Gatenholm, Acta Biomater., 6, 2540 (2010).

    Article  CAS  Google Scholar 

  10. H. Fink, L. Faxälv, G. F. Molnár, K. Drotz, B. Risberg, T. L. Lindahl, and A. Sellborn, Acta Biomater., 6, 1125 (2010).

    Article  CAS  Google Scholar 

  11. L. Nimeskern, H. M. Ávila, J. Sundberg, P. Gatenholm, R. Müller, and K. S. Stok, J. Mech. Behav. Biomed., 22, 12 (2013).

    Article  CAS  Google Scholar 

  12. W. S. Chang and H. H. Chen, Food Hydrocolloid., 53, 75 (2016).

    Article  CAS  Google Scholar 

  13. L. Lamboni, Y. Li, J. Liu, and G. Yang, Biomacromolecules, 17, 3076 (2016).

    Article  CAS  Google Scholar 

  14. E. P. Choi, W. Y. Chin, E. Y. Wan, and C. L. Lam, J. Adv. Nurs., 72, 1134 (2016).

    Article  Google Scholar 

  15. S. L. Percival, S. Finnegan, G. Donelli, C. Vuotto, S. Rimmer, and B. A. Lipsky, Crit. Rev. Microbiol., 42, 293 (2016).

    CAS  Google Scholar 

  16. M. Bhandari, K. J. Jeray, B. A. Petrisor, P. J. Devereaux, D. Heels-Ansdell, E. H. Schemitsch, J. Anglen, G. J. Della Rocca, C. Jones, H. Kreder, S. Liew, P. McKay, S. Papp, P. Sancheti, S. Sprague, T. B. Stone, X. Sun, S. L. Tanner, P. Tornetta, T. Tufescu, S. Walter, and G. H. Guyatt, New Engl. J. Med., 373, 2629 (2015).

    Article  CAS  Google Scholar 

  17. M. Iwashita, D. Murato, H. Yano, Y. Santo, M. Nozaki, and H. Fujishima, J. Clin. Exp. Ophthalmol., 7, 571 (2016).

    Article  Google Scholar 

  18. B. Wei, G. Yang, and F. Hong, Carbohydr. Polym., 84, 533 (2011).

    Article  CAS  Google Scholar 

  19. H. Sehaqui, A. Liu, Q. Zhou, and L. A. Berglund, Biomacromolecules, 11, 2195 (2010).

    Article  CAS  Google Scholar 

  20. A. Svensson, E. Nicklasson, T. Harrah, B. Panilaitis, D. Kaplan, M. Brittberg, and P. Gatenholm, Biomater., 26, 419 (2005).

    Article  CAS  Google Scholar 

  21. A. Marra, C. Silvestre, D. Duraccio, and S. Cimmino, Int. J. Biol. Macromol., 88, 254 (2016).

    Article  CAS  Google Scholar 

  22. Y. Ramot, M. H. Zada, A. J. Domb, and A. Nyska, Adv. Drug Deliver. Rev., 107, 153 (2016).

    Article  CAS  Google Scholar 

  23. S. I. A. Razak, N. F. A. Sharif, N. H. M. Nayan, I. I. Muhamad, and M. Y. Yahya, Bioresources, 10, 4350 (2015).

    Google Scholar 

  24. M. W. Ullah, M. Ul-Islam, S. Khan, and J. K. Park, Cellulose, 20, 589 (2013).

    Article  Google Scholar 

  25. J. Wu, Y. Zheng, W. Song, J. Luan, X. Wen, Z. Wu, X. Chen, Q. Wang, and S. Guo, Carbohydr. Polym., 102, 762 (2014).

    Article  CAS  Google Scholar 

  26. W. C. Lin, C. C. Lien, H. J. Yeh, C. M. Yu, and S. H. Hsu, Carbohydr. Polym., 94, 603 (2013).

    Article  CAS  Google Scholar 

  27. G. Barbaro, M. R. Galdi, L. Di Maio, and L. Incarnato, Eur. Polym. J., 68, 80 (2015).

    Article  CAS  Google Scholar 

  28. X. Hua, M. He, and X. Zhou, Mater. Sci. Forum., 814, 132 (2015).

    Article  Google Scholar 

  29. ASTM D-1922 (2015).

  30. ASTM D774/ D774M (2002).

  31. ASTM E104-02 (2012).

  32. K. Varaprasad, Y. M. Mohan, K. Vimala, and K. Mohana Raju, J. Appl. Polym. Sci., 121, 784 (2011).

    Article  CAS  Google Scholar 

  33. I. González, S. Boufi, M. A. Pèlach, M. Alcalà, F. Vilaseca, and P. Mutjé, BioResources, 7, 5167 (2012).

    Article  Google Scholar 

  34. N. F. A. Sharif, S. I. A. Razak, N. H. M. Nayan, M. Y. Yahya, and W. A. W. A. Rahman, Cell. Chem. Technol., 49, 659 (2015).

    CAS  Google Scholar 

  35. M. RiáKim and K. YoungáCho, Chem. Commun., 46, 7433 (2010).

    Article  Google Scholar 

  36. D. P. Chattopadhyay and B. H. Patel, J. Text. Sci. Eng., 6, 248 (2016).

    Google Scholar 

  37. T. R. Hoare and D. S. Kohane, Polymer, 49, 1993 (2008).

    Article  CAS  Google Scholar 

  38. M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N. E. Bhattarai, J. Biomed. Mater. Res. B., 67, 675 (2003).

    Article  Google Scholar 

  39. Y. Zhang, C. T. Lim, S. Ramakrishna, and Z. M. Huang, J. Mater. Sci.-Mater. M., 16, 933 (2005).

    Article  CAS  Google Scholar 

  40. M. Jannesari, J. Varshosaz, M. Morshed, and M. Zamani, Int. J. Nanomed., 6, 993 (2011).

    CAS  Google Scholar 

  41. J. Yun, J. S. Im, Y. S. Lee, and H. I. Kim, Eur. Polym. J., 47, 1893 (2011).

    Article  CAS  Google Scholar 

  42. M. Cabuk, Y. Alan, and H. I. Unal, Carbohydr. Polym. 161, 71 (2017).

    Article  CAS  Google Scholar 

  43. S. E. Braslavsky, Pure Appl. Chem., 79, 293 (2007).

    Article  CAS  Google Scholar 

  44. A. Fazlara and M. Ekhtelat, Am. Eurasian J. Agric. Environ. Sci., 12, 23 (2012).

    CAS  Google Scholar 

  45. G. McDonnell and A. D. Russell, Clin. Microbiol. Rev., 14, 227 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saiful Izwan Abd Razak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foong, C.Y., Hamzah, M.S.A., Razak, S.I.A. et al. Influence of Poly(lactic acid) Layer on the Physical and Antibacterial Properties of Dry Bacterial Cellulose Sheet for Potential Acute Wound Healing Materials. Fibers Polym 19, 263–271 (2018). https://doi.org/10.1007/s12221-018-7850-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7850-7

Keywords

Navigation