Skip to main content
Log in

Influence of fibre contents on mechanical and thermal properties of roselle fibre reinforced polyurethane composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the effect of fibre content on mechanical and morphological properties and thermal stability of roselle fibres (RFs) reinforced polyurethane (TPU) composites. The RF/TPU composites were prepared at difference fibre contents; 10, 20, 30, 40 and 50 wt% by melt mixed mixer and hot press at 170 °C. Mechanical (tensile, flexural and impact strength) and Thermogravimetric analysis (TGA) properties of RF/TPU composites were measured according to ASTM standard. Obtained results indicated that effect of fibre contents display improved tensile and flexural and impact strength properties. RF/TPU composites show the best mechanical and thermal properties at 40 wt% roselle fibre content. Scanning electron microscopy (SEM) micrograph of fractured tensile sample of the roselle composite revealed good fibre/matrix bonding. TGA showed that RF/TPU with difference fibre contents had improved thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ramesh, K. Palanikumar, and K. H. Reddy, Procedia Eng., 51, 745 (2013).

    Article  CAS  Google Scholar 

  2. Y. A. El-Shekeil, S. M. Sapuan, M. Jawaid, and O. M. Al-Shuja’a, Mater. Des., 58, 130 (2014).

    Article  CAS  Google Scholar 

  3. H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, Compos. Pt. B-Eng., 42, 856 (2011).

    Article  Google Scholar 

  4. N. Razali, M. S. Salit, M. Jawaid, M. R. Ishak, and Y. Lazim, BioResources, 10, 1803 (2015).

    Article  CAS  Google Scholar 

  5. R. Nadlene, S. M. Sapuan, M. Jawaid, M. R. Ishak, and Y. Yusriah, Polym. Compos., doi:10.1002/pc.23927 (2016).

    Google Scholar 

  6. J. K. C. Manickam, A. Athijayamani, and J. E. Samuel, Polym. Compos., 36, 1638 (2015).

    Article  CAS  Google Scholar 

  7. M. R. Ishak, S. M. Sapuan, Z. Leman, M. Z. A. Rahman, U. M. K. Anwar, and J. P. Siregar, Carbohydr. Polym., 91, 699 (2013).

    Article  CAS  Google Scholar 

  8. R. Nadlene, S. M. Sapuan, M. Jawaid, M. R. Ishak, and L. Yusriah, J. Nat. Fibers, 13, 10 (2016).

    Article  Google Scholar 

  9. S. Navaneethakrishnan and A. Athijayamani, Mater. Environ. Sci., 7, 1674 (2016).

    Google Scholar 

  10. M. R. Ishak, S. M. Sapuan, Z. Leman, M. Z. A. Rahman, and U. M. K. Anwar, Therm. Anal. Calorim., 109, 981 (2012).

    Article  CAS  Google Scholar 

  11. R. Nadlene, S. M. Sapuan, M. Jawaid, M. R. Ishak, and L. Yusriah, Fibres Text. East. Eur., 23, 23 (2015).

    Article  CAS  Google Scholar 

  12. J. Silva, R. Andrade, R. Huang, J. Liu, M. Cox, and J. M. Maia, J. Nonnewton. Fluid Mech., 222, 96 (2015).

    Article  CAS  Google Scholar 

  13. B. Finnigan, D. Martin, P. Halley, R. Truss, and K. Campbell, Polymer, 45, 2249 (2004).

    Article  CAS  Google Scholar 

  14. H. Yeganeh and M. A. Shamekhi, Polymer, 45, 359 (2004).

    Article  CAS  Google Scholar 

  15. S. Wilberforce and S. Hashemi, J. Mater. Sci., 44, 1333 (2009).

    Article  CAS  Google Scholar 

  16. R. A. Corrêa, R. C. R. Nunes, and W. Z. F. Filho, Polym. Compos., 19, 152 (1998).

    Article  Google Scholar 

  17. C. G. Mothé, C. R. Araujo, and S. H. Wang, J. Therm. Anal. Calorim., 95, 181 (2008).

    Article  Google Scholar 

  18. Y. A. El-Shekeil, S. M. Sapuan, E. S. Zainudin, and A. Khalina, Key Eng. Mater., 471-472, 297 (2011).

    Article  CAS  Google Scholar 

  19. H. Y. Sastra, J. P. Siregar, S. M. Sapuan, and M. M. Hamdan, Polym. Plast. Technol. Eng., 45, 149 (2006).

    Article  CAS  Google Scholar 

  20. Y. A. El-Shekeil, S. M. Sapuan, and M. W. Algrafi, Mater. Des., 64, 330 (2014).

    Article  CAS  Google Scholar 

  21. K. A. Iyer and J. M. Torkelson, Compos. Sci. Technol., 102, 152 (2014).

    Article  CAS  Google Scholar 

  22. J. Datta, Ind. Crops Prod., 74, 566 (2015).

    Article  CAS  Google Scholar 

  23. D. Chandramohan and K. Marimuthu, J. Adv. Eng. Sci. Technol., 6, 97 (2011).

    Google Scholar 

  24. A. S. Singha and V. K. Thakur, Iran. Polym. J., 17, 861 (2008).

    CAS  Google Scholar 

  25. S. Ozturk, Compos. Mater., 44, 2265 (2010).

    Article  CAS  Google Scholar 

  26. S. Shibata, Y. Cao, and I. Fukumoto, Polym. Test., 24, 1005 (2005).

    Article  CAS  Google Scholar 

  27. Y. A. El-shekeil, S. M. Sapuan, K. Abdan, and E. S. Zainudin, Mater. Des., 40, 299 (2012).

    Article  CAS  Google Scholar 

  28. V. S. Sreenivasan, D. Ravindran, V. Manikandan, and R. Narayanasamy, Mater. Des., 32, 2444 (2011).

    Article  CAS  Google Scholar 

  29. I. M. D. Rosa, J. M. Kenny, D. Puglia, C. Santulli, and F. Sarasini, Compos. Sci. Technol., 70, 116 (2010).

    Article  Google Scholar 

  30. A. Elkhaoulani, F. Z. Arrakhiz, K. Benmoussa, R. Bouhfid, and A. Qaiss, Mater. Des., 49, 203 (2013).

    Article  CAS  Google Scholar 

  31. I. O. Bakare, F. E. Okieimen, C. Pavithran, H. P. S. Abdul Khalil, and M. Brahmakumar, Mater. Des., 31, 4274 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Sapuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radzi, A.M., Sapuan, S.M., Jawaid, M. et al. Influence of fibre contents on mechanical and thermal properties of roselle fibre reinforced polyurethane composites. Fibers Polym 18, 1353–1358 (2017). https://doi.org/10.1007/s12221-017-7311-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7311-8

Keywords

Navigation