Skip to main content
Log in

Comparative investigation of molded thickness and surface density on the structures and mechanical properties of lightweight reinforced thermoplastic composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Lightweight reinforced thermoplastic (LWRT) is a newly developed porous material. The low density, high rigidity, design flexibility and sound absorption of LWRT facilitate its application in the automotive industry. Fibers are bonded with a matrix and air is imported by deconsolidation, which is not only economical but also environmentally friendly. In this work, film stacking and non-woven methods were employed as the impregnation techniques to manufacture LWRT. The molded thickness and surface density of LWRT were varied to study their influences on the structures and mechanical properties. Different lengths of fibers in LWRT were selected and 7 % PP-g-MAH was added to the matrix and compared with unmodified matrix. The mechanical properties decreased with the increase in molded thickness and the decrease in surface density. With higher fiber length, the strength and stiffness increased, while the toughness exhibited a maximum value at 80 mm fiber length. The strength and stiffness of LWRT were also enhanced when 7 % PP-g-MAH was added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Haque and S. Ickes, SAE 2000 World Congress, SAE International, Detroit, MI, United States, March 6-9, 2000.

    Google Scholar 

  2. J. Stange and H. Münstedt, J. Cell. Plast., 42, 445 (2006).

    Article  CAS  Google Scholar 

  3. R. L. Heck, J. Vinyl Add. Tech., 4, 113 (1998).

  4. C. Wang, S. Ying, and Z. Xiao, J. Cell. Plast., 49, 65 (2013).

    Article  CAS  Google Scholar 

  5. A. K. Bledzki and O. Faruk, J. Appl. Polym. Sci., 97, 1090 (2005).

    Article  CAS  Google Scholar 

  6. L. Vaikhanksi and S. R. Nutt, Compos. Pt. A-Appl. Sci. Manuf., 34, 755 (2003).

    Article  Google Scholar 

  7. E. M. Wouterson, F. Y. Boey, X. Hu, and S.-C. Wong, Compos. Sci. Technol., 65, 1840 (2005).

    Article  CAS  Google Scholar 

  8. L. Ye, M. Lu, and Y.-W. Mai, Compos. Sci. Technol., 62, 2121 (2002).

    Article  CAS  Google Scholar 

  9. M. Lu, L. Ye, and Y.-W. Mai, Compos. Sci. Technol., 64, 191 (2004).

    Article  CAS  Google Scholar 

  10. L. Ye, Z.-R. Chen, M. Lu, and M. Hou, Compos. Pt. AAppl. Sci. Manuf., 36, 915 (2005).

    Article  Google Scholar 

  11. J. Wolfrath, V. Michaud, and J.-A. Månson, Compos. Sci. Technol., 65, 1601 (2005).

    Article  CAS  Google Scholar 

  12. J. Wolfrath, V. Michaud, and J.-A. Månson, Compos. Pt. A-Appl. Sci. Manuf., 36, 1608 (2005).

    Article  Google Scholar 

  13. Y. Wan and J. Takahashi, J. Reinf. Plast. Compos., 33, 1613 (2014).

    Article  Google Scholar 

  14. C. Harper and K. Kunal, 12th Annual Automotive Composites Conference and Exhibition, SPE Automotive and Composites Divisions, Troy, MI, United States, September 11-13, 2012.

    Google Scholar 

  15. H. Dittmar, 6th Annual SPE Automotive Composites Conference, Society of Petroleum Engineers, Troy, MI, United States, September 12-14, 2006.

    Google Scholar 

  16. S. Jespersen, M. Wakeman, V. Michaud, D. Cramer, and J.-A. Månson, Compos. Sci. Technol., 68, 1822 (2008).

    Article  CAS  Google Scholar 

  17. B.-H. Lee, H.-S. Kim, S. Lee, H.-J. Kim, and J. R. Dorgan, Compos. Sci. Technol., 69, 2573 (2009).

    Article  CAS  Google Scholar 

  18. J. Schell, M. Renggli, G. Van Lenthe, R. Müller, and P. Ermanni, Compos. Sci. Technol., 66, 2016 (2006).

    Article  CAS  Google Scholar 

  19. B. Harris, “Engineering Composite Materials”, pp.99–127, The Institute of Materials, London, 1999.

    Google Scholar 

  20. L. Vaikhanski, J. J. Lesko, and S. R. Nutt, Compos. Sci. Technol., 63, 1403 (2003).

    Article  CAS  Google Scholar 

  21. J. Bian, X. W. Wei, H. L. Lin, I. T. Chang, and E. Sancaktar, J. Appl. Polym. Sci., 130, 3025 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyin Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Shen, C. & Dai, G. Comparative investigation of molded thickness and surface density on the structures and mechanical properties of lightweight reinforced thermoplastic composites. Fibers Polym 18, 303–312 (2017). https://doi.org/10.1007/s12221-017-6067-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-6067-5

Keywords

Navigation