Skip to main content
Log in

Surface functionalisation of UHMW polyethylene textile with atmospheric pressure plasma

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Ultrahigh molecular weight polyethylene (UHMW PE) has high chemical resistance, good flexibility and remarkable strength along with low density, which makes it a good choice for lightweight textile reinforced composites. One drawback is the low melting point, limiting the possible applications at high temperatures. However its chemical structure leads to almost no chemical interactions of the interface. One way to enhance these interactions is the application of atmospheric pressure plasma. Polyethylene (PE) as yarn and in woven form was plasma treated in atmospheric air plasma generated by means of dielectric barrier discharge technique and the resulting effects on wettability, chemical composition and surface structure were studied. It was found that oxygen containing functional groups are introduced into the outer layer of the PE, thus increasing wettability and dyeability significantly. It could be shown that the changes last for at least 3 months in air without the necessity of any precautions. A degradation of the textile fibre during air plasma treatment was also observed, leading to a decrease of tensile strength and maximum elongation after more than five minutes of air plasma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Shishoo, Int. J. Cloth. Sci. Technol., 14, 201 (2002).

    Article  Google Scholar 

  2. R. A. Scott, “Textiles for Protection”, Woodhead Publishing Limited, Cambridge, 2005.

    Book  Google Scholar 

  3. P. Davies, Y. Reaud, L. Dussud, and P. Woerther, Ocean Eng., 38, 2208 (2011).

    Article  Google Scholar 

  4. B. Bridgens and M. Birchall, Eng. Struct., 44, 1 (2012).

    Article  Google Scholar 

  5. M. Curbach and F. Jesse, Beton- und Stahlbetonbau, 104, 9 (2009).

    Article  Google Scholar 

  6. C. Bakis, L. Bank, V. Brown, E. Cosenza, J. Davalos, J. Lesko, A. Machida, S. Rizkalla, and T. Triantafillou, J. Compos. Constr., 6, 73 (2002).

    Article  CAS  Google Scholar 

  7. L. C. Hollaway, Constr. Build. Mater., 24, 2419 (2010).

    Article  Google Scholar 

  8. C. Cherif, Technical Textiles, 51, E22 (2010).

    Google Scholar 

  9. C. Freudenberg in “Textile Werkstoffe für den Leichtbau: Techniken, Verfahren, Materialien, Eigenschaften” (C. Cherif), pp.39–109, Springer, Berlin, Heidelberg u.a., 2011.

    Book  Google Scholar 

  10. H. Hund and R.-D. Hund in “Textile Werkstoffe für den Leichtbau: Techniken, Verfahren, Materialien, Eigenschaften” (C. Cherif), pp.453–507, Springer, Berlin, Heidelberg u.a., 2011.

    Book  Google Scholar 

  11. K. W. Lee and T. J. McCarthy, Macromolecules, 21, 309 (1988).

    Article  CAS  Google Scholar 

  12. M. S. Silverstein and J. Sadovsky, J. Adhes. Sci. Technol., 9, 1193 (1995).

    Article  CAS  Google Scholar 

  13. Y. Muraoka, M. J. Rich, and L. T. Drzal, J. Adhes. Sci. Technol., 16, 1669 (2002).

    Article  CAS  Google Scholar 

  14. I. Brass, D. M. Brewis, I. Sutherland, and R. Wiktorowicz, Int. J. Adhes. Adhes., 11, 150 (1991).

    Article  CAS  Google Scholar 

  15. F. J. du Toit and R. D. Sanderson, J. Fluorine Chem., 98, 107 (1999).

    Article  Google Scholar 

  16. S.-J. Park, S. Y. Song, J.-S. Shin, and J.-M. Rhee, J. Colloid. Interface Sci., 283, 190 (2005).

    Article  CAS  Google Scholar 

  17. Q. Song and A. N. Netravali, J. Adhes. Sci. Technol., 12, 957 (1998).

    Article  CAS  Google Scholar 

  18. M. Murahara and M. Okoshi, J. Adhes. Sci. Technol., 9, 1593 (1995).

    Article  CAS  Google Scholar 

  19. C. Brun, A. Chambaudet, C. Mavon, F. Berger, M. Fromm, and F. Jaffiol, Appl. Surf. Sci., 157, 85 (2000).

    Article  CAS  Google Scholar 

  20. M. Strobel, M. J. Walzak, J. M. Hill, A. Lin, E. Karbashewski, and C. S. Lyons, J. Adhes. Sci. Technol., 9, 365 (1995).

    Article  CAS  Google Scholar 

  21. R. Morent, N. De Geyter, J. Verschuren, K. De Clerck, P. Kiekens, and C. Leys, Surf. Coatings Technol., 202, 3427 (2008).

    Article  CAS  Google Scholar 

  22. L. S. Penn and H. Wang, Polym. Adv. Technol., 5, 809 (1994).

    Article  CAS  Google Scholar 

  23. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 1 (2006).

    Article  Google Scholar 

  24. N. De Geyter, R. Morent, and C. Leys, Surf. Coatings Technol., 201, 2460 (2006).

    Article  Google Scholar 

  25. M. Perucca, G. Benveniste in “Plasma Technology for Hyperfunctional Surfaces” (H. Rauscher, M. Perucca, G. Buyle Eds.), 1st ed., pp.364–375, WILEY-VCH Verlag GmbH & Co KGaA, Weinheim, 2010.

  26. S. Teodoru, Y. Kusano, N. Rozlosnik, and P. K. Michelsen, Plasm. Proc. Polym., 6, S375 (2009).

    Article  CAS  Google Scholar 

  27. D. Hegemann, Vakuum in Forschung und Technik, 23, 28 (2011).

    Article  CAS  Google Scholar 

  28. H. P. Jennissen, Mat.-wiss u. Werkstofftech., 42, 1111 (2011).

    Article  Google Scholar 

  29. W. Rabel, Phys. Bl., 33, 151 (1977).

    Article  CAS  Google Scholar 

  30. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1741 (1969).

    Article  CAS  Google Scholar 

  31. D. H. Kaelble and K. C. Uy, J. Adhes., 2, 50 (1970).

    Article  CAS  Google Scholar 

  32. N. De Geyter, R. Morent, and C. Leys, Plasma Sources Sci. Technol., 15, 78 (2006).

    Article  Google Scholar 

  33. T. Murakami, S. Kuroda, and Z. Osawa, J. Colloid. Interface Sci., 202, 37 (1998).

    Article  CAS  Google Scholar 

  34. A. Kaji, A. Yamanaka, and M. Murano, Polym. J., 22, 893 (1990).

    Article  CAS  Google Scholar 

  35. DSM Dyneema LLC; Fact Sheet — Dyneema® high-Strength, High-modulus Polyethylene Fiber, 2008.

    Google Scholar 

  36. K. S. Kim, C. M. Ryu, C. S. Park, G. S. Sur, and C. E. Park, Polymer, 44, 6287 (2003).

    Article  CAS  Google Scholar 

  37. I. Chodák, Prog. Polym. Sci., 23, 1409 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bartusch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartusch, M., Hund, R.D., Hund, H. et al. Surface functionalisation of UHMW polyethylene textile with atmospheric pressure plasma. Fibers Polym 15, 736–743 (2014). https://doi.org/10.1007/s12221-014-0736-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-0736-4

Keywords

Navigation