Skip to main content
Log in

Multi-bump positive solutions for a logarithmic Schrödinger equation with deepening potential well

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This article concerns the existence of multi-bump positive solutions for the following logarithmic Schrödinger equation:

$$\left\{ {\begin{array}{*{20}{l}} { - \Delta u + \lambda V(x)u = u\log {u^2}\;\;\;in\;\;\;{\mathbb{R}^N},} \\ {u \;\in {H^1}({R^N}),} \end{array}} \right.$$

where N ⩾ 1, ⋋ > 0 is a parameter and the nonnegative continuous function V: ℝN → ℝ has potential well Ω:= int V−1(0) which possesses k disjoint bounded components \({\rm{\Omega}}\,{\rm{=}}\, \cup _{j = 1}^k{{\rm{\Omega}}_j}\). Using the variational methods, we prove that if the parameter ⋋ > 0 is large enough, then the equation has at least 2k − 1 multi-bump positive solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves C O. Existence of multi-bump solutions for a class of quasilinear problems. Adv Nonlinear Stud, 2006, 6: 491–509

    Article  MathSciNet  Google Scholar 

  2. Alves C O, de Morais Filho D C. Existence and concentration of positive solutions for a Schrödinger logarithmic equation. Z Angew Math Phys, 2018, 69: 144

    Article  Google Scholar 

  3. Alves C O, de Morais Filho D C, Figueiredo G M. On concentration of solution to a Schrödinger logarithmic equation with deepening potential well. Math Methods Appl Sci, 2019, 42: 4862–4875

    Article  MathSciNet  Google Scholar 

  4. Alves C O, de Morais Filho D C, Souto M A S. Multiplicity of positive solutions for a class of problems with critical growth in ℝN. Proc Edinb Math Soc (2), 2009, 52: 1–21

    Article  MathSciNet  Google Scholar 

  5. Alves C O, Ji C. Multiple positive solutions for a Schrödinger logarithmic equation. Discrete Contin Dyn Syst, 2020, 40: 2671–2685

    Article  MathSciNet  Google Scholar 

  6. Alves C O, Ji C. Existence and concentration of positive solutions for a logarithmic Schröodinger equation via penalization method. Calc Var Partial Differential Equations, 2020, 59: 21

    Article  Google Scholar 

  7. Alves C O, Ji C. Existence of a positive solution for a logarithmic Schrödinger equation with saddle-like potential. Manuscripta Math, 2021, 164: 555–575

    Article  MathSciNet  Google Scholar 

  8. Alves C O, Nóbrega A B. Existence of multi-bump solutions for a class of elliptic problems involving the biharmonic operator. Monatsh Math, 2017, 183: 35–60

    Article  MathSciNet  Google Scholar 

  9. Alves C O, Nóbrega A B, Yang M B. Multi-bump solutions for Choquard equation with deepening potential well. Calc Var Partial Differential Equations, 2016, 55: 48

    Article  MathSciNet  Google Scholar 

  10. Alves C O, Souto M A S. Multiplicity of positive solutions for a class of problems with exponential critical growth in ℝ2. J Differential Equations, 2008, 244: 1501–1520

    Article  MathSciNet  Google Scholar 

  11. Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14: 349–381

    Article  MathSciNet  Google Scholar 

  12. Bartsch T, Wang Z-Q. Existence and multiplicity results for some superlinear elliptic problems on ℝN. Comm Partial Differential Equations, 1995, 20: 1725–1741

    Article  MathSciNet  Google Scholar 

  13. Bartsch T, Wang Z-Q. Multiple positive solutions for a nonlinear Schroödinger equation. Z Angew Math Phys, 2000, 51: 366–384

    Article  MathSciNet  Google Scholar 

  14. d’Avenia P, Montefusco E, Squassina M. On the logarithmic Schrödinger equation. Commun Contemp Math, 2014, 16: 1350032

    Article  MathSciNet  Google Scholar 

  15. d’Avenia P, Squassina M, Zenari M. Fractional logarithmic Schroödinger equations. Math Methods Appl Sci, 2015, 38: 5207–5216

    Article  MathSciNet  Google Scholar 

  16. Degiovanni M, Zani S. Multiple solutions of semilinear elliptic equations with one-sided growth conditions. Math Comput Modelling, 2000, 32: 1377–1393

    Article  MathSciNet  Google Scholar 

  17. del Pino M, Dolbeault J. The optimal Euclidean Lp-Sobolev logarithmic inequality. J Funct Anal, 2003, 197: 151–161

    Article  MathSciNet  Google Scholar 

  18. del Pino M, Felmer P L. Local mountain passes for semilinear elliptic problems in unbounded domains. Calc Var Partial Differential Equations, 1996, 4: 121–137

    Article  MathSciNet  Google Scholar 

  19. Ding Y H, Tanaka K. Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manuscripta Math, 2003, 112: 109–135

    Article  MathSciNet  Google Scholar 

  20. Guo Y X, Tang Z W. Multi-bump bound state solutions for the quasilinear Schrödinger equation with critical frequency. Pacific J Math, 2014, 270: 49–77

    Article  MathSciNet  Google Scholar 

  21. Ji C, Szulkin A. A logarithmic Schroödinger equation with asymptotic conditions on the potential. J Math Anal Appl, 2016, 437: 241–254

    Article  MathSciNet  Google Scholar 

  22. Liang S H, Zhang J H. Multi-bump solutions for a class of Kirchhoff type problems with critical growth in ℝN. Topol Methods Nonlinear Anal, 2016, 48: 71–101

    MathSciNet  MATH  Google Scholar 

  23. Miranda C. Un’osservazione su un teorema di Brouwer. Boll Unione Mat Ital (9), 1940, 3: 5–7

    MathSciNet  MATH  Google Scholar 

  24. Squassina M, Szulkin A. Multiple solutions to logarithmic Schröodinger equations with periodic potential. Calc Var Partial Differential Equations, 2015, 54: 585–597

    Article  MathSciNet  Google Scholar 

  25. Squassina M, Szulkin A. Erratum to: Multiple solutions to logarithmic Schröodinger equations with periodic potential. Calc Var Partial Differential Equations, 2017, 56: 56

    Article  Google Scholar 

  26. Tanaka K, Zhang C X. Multi-bump solutions for logarithmic Schrödinger equations. Calc Var Partial Differential Equations, 2017, 56: 33

    Article  Google Scholar 

  27. Vázquez J L. A strong maximum principle for some quasilinear elliptic equations. Appl Math Optim, 1984, 12: 191–201

    Article  MathSciNet  Google Scholar 

  28. Wang Z-Q, Zhang C X. Convergence from power-law to logarithm-law in nonlinear scalar field equations. Arch Ration Mech Anal, 2019, 231: 45–61

    Article  MathSciNet  Google Scholar 

  29. Willem M. Minimax Theorems. Boston: Birkhöauser, 1996

    Book  Google Scholar 

  30. Zhang C X, Zhang X. Bound states for logarithmic Schröodinger equations with potentials unbounded below. Calc Var Partial Differential Equations, 2020, 59: 23

    Article  Google Scholar 

  31. Zloshchastiev K G. Logarithmic nonlinearity in the theories of quantum gravity: Origin of time and observational consequences. Gravit Cosmol, 2010, 16: 288–297

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq/Brazil (Grant No. 304804/2017-7). The second author was supported by Natural Science Foundation of Shanghai (Grant Nos. 20ZR1413900 and 18ZR1409100). The authors thank the referees for many helpful comments which clarify the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claudianor O. Alves or Chao Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.O., Ji, C. Multi-bump positive solutions for a logarithmic Schrödinger equation with deepening potential well. Sci. China Math. 65, 1577–1598 (2022). https://doi.org/10.1007/s11425-020-1821-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1821-9

Keywords

MSC(2020)

Navigation