Skip to main content
Log in

Non-degeneracy of Poincaré–Einstein Four-Manifolds Satisfying a Chiral Curvature Inequality

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

A Poincaré–Einstein metric g is called non-degenerate if there are no non-zero infinitesimal Einstein deformations of g, in Bianchi gauge, that lie in \(L^2\). We prove that a 4-dimensional Poincaré–Einstein metric is non-degenerate if it satisfies a certain chiral curvature inequality. Write \({{\,\textrm{Rm}\,}}_+\) for the part of the curvature operator of g which acts on self-dual 2-forms. We prove that if \({{\,\textrm{Rm}\,}}_+\) is negative definite then g is non-degenerate. This is a chiral generalisation of a result due to Biquard and Lee, that a Poincaré–Einstein metric of negative sectional curvature is non-degenerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biquard, O.: Asymptotically Symmetric Einstein Metrics, AMS Monographs, vol. 13. American Mathematical Society. https://www.ams.org/publications/authors/books/postpub/smfams-13 (2006)

  2. Calderbank, D.M.J., Singer, M.: Einstein metrics and complex singularities. Invent. Math. 156, 405–443 (2004). https://doi.org/10.1007/s00222-003-0344-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Fefferman, C., Graham, C.R.: Conformal invariants, Élie Cartan et les mathématiques d’aujourd’hui, Astérisque, no. S131. http://www.numdam.org/item/AST_1985__S131__95_0 (1985)

  4. Fine, J.: A gauge theoretic approach to anti-self-dual Einstein metrics. http://arxiv.org/abs/1111.5005 (2011)

  5. Fine, J., Herfray, Y., Krasnov, K., Scarinci, C.: Asymptotically hyperbolic connections. Class. Quantum Grav. 33(18), 185011 (2016). https://doi.org/10.1088/0264-9381/33/18/185011

    Article  MathSciNet  MATH  Google Scholar 

  6. Fine, J., Krasnov, K., Panov, D.: A gauge theoretic approach to Einstein 4-manifolds. N. Y. J. Math. 20, 293–323 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Fine, J., Krasnov, K., Singer, M.: Local rigidity of Einstein 4-manifolds satisfying a chiral curvature condition. Math. Ann. 379, 569–588 (2021). https://doi.org/10.1007/s00208-020-02097-z

    Article  MathSciNet  MATH  Google Scholar 

  8. Fine, J., Panov, D.: Symplectic Calabi-Yau manifolds, minimal surfaces and the hyperbolic geometry of the conifold. J. Differ. Geom. 82(1), 155–205 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Graham, C.R., Lee, J.M.: Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87(2), 186–225 (1991). https://doi.org/10.1016/0001-8708(91)90071-E

    Article  MathSciNet  MATH  Google Scholar 

  10. Krasnov, K.: Pure connection action principle for general relativity. Phys. Rev. Lett. 106, 4 (2011). https://doi.org/10.1103/PhysRevLett.106.251103

    Article  Google Scholar 

  11. Lee, J.M.: Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds, Memoirs of the American Mathematical Society. American Mathematical Society. https://bookstore.ams.org/memo-183-864 (2006)

  12. Maldacena, J.: The large \(N\) limit of superconformal field theories and supervgravity. Adv. Theor. Math. Phys. 2(2), 231–252 (1998). https://doi.org/10.4310/ATMP.1998.v2.n2.a1

    Article  MathSciNet  MATH  Google Scholar 

  13. Mazzeo, R.: Elliptic theory of differential edge operators I. Commun. Partial. Differ. Equ. 16(10), 1615–1664 (1991). https://doi.org/10.1080/03605309108820815

    Article  MathSciNet  MATH  Google Scholar 

  14. Mazzeo, R., Melrose, R.B.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75(2), 260–310 (1987). https://doi.org/10.1016/0022-1236(87)90097-8

    Article  MathSciNet  MATH  Google Scholar 

  15. Weinstein, A.: Fat bundles and symplectic manifolds. Adv. Math. 37(3), 239–250 (1980). https://doi.org/10.1016/0001-8708(80)90035-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Rafe Mazzeo and Michael Singer for several helpful conversations on this topic. This research was supported by the ERC consolidator grant “SymplecticEinstein” 646649 and the Excellence of Science Grant 4000725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Fine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fine, J. Non-degeneracy of Poincaré–Einstein Four-Manifolds Satisfying a Chiral Curvature Inequality. J Geom Anal 33, 249 (2023). https://doi.org/10.1007/s12220-023-01306-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01306-w

Keywords

Mathematics Subject Classification

Navigation