Skip to main content
Log in

Multiplicity and Concentration of Positive Solutions for (pq)-Kirchhoff Type Problems

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of the (pq)-Kirchhoff type problem \(-\left( 1+a\int _{{\mathbb {R}}^{N}}|\nabla u|^{p}dx\right) \Delta _{p} u -\left( 1+b\int _{{\mathbb {R}}^{N}}|\nabla u|^{q}dx\right) \Delta _{q} u +V_{\varepsilon }(x) \left( |u|^{p-2}u + |u|^{q-2}u\right) = f(u)\quad \hbox {in}\quad {\mathbb {R}}^{N}, \) where \(\varepsilon >0\) is a small parameter, \(a,\,b>0\), \(1< p<q<N<2q\), \(\Delta _{s}u={{\,\textrm{div}\,}}(|\nabla u|^{s-2}\nabla u)\), with \(s\in \{p, q\}\), is the s-Laplacian, \(V:{\mathbb {R}}^{N}\rightarrow {\mathbb {R}}\) is a continuous potential, \(V_{\varepsilon }(x)=V(\varepsilon x)\) and \(f:{\mathbb {R}}\rightarrow {\mathbb {R}}\) is a continuous non-linearity without satisfying usual Ambrosetti–Rabinowitz condition. By using Nehari manifold techniques and perturbation methods, we establish the existence of positive ground state solution, and by those methods combined with Ljusternik–Schnirelmann theory, we investigate the multiplicity and concentration of solutions. In particular, our results extend and improve the works of He and Zou (J Differ Equ 252:1813–1834, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abid, I., Baraket, S., Jaidane, R.: On a weighted elliptic equation of N-Kirchhoff type with double exponential growth. Demonstr. Math. 55, 634–657 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, R.A.: Sobolev Spaces, Pure and Applied Mathematics, vol. 65. Academic Press, New York, London (1975)

    Google Scholar 

  3. Alves, C.O., Figueiredo, G.M.: Multiplicity and concentration of positive solutions for a class of quasilinear problems. Adv. Nonlinear Stud. 11(2), 265–294 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, V., Isernia, T.: A multiplicity result for a \((p, q)\)-Schrödinger–Kirchhoff type equation. Ann. Mat. Pura Appl. 201(2), 943–984 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio, V., Repov\(\check{s}\), D.: Multiplicity and concentration results for a \((p,q)\)-Laplacian problem in \({\mathbb{R} }^{N}\). Z. Angew. Math. Phys. 72(1), 33 (2021)

  6. Bernstein, S.: Sur une classe d’équations fonctionnelles aux dérivées partielles. Bull. Acad. Sci. URSS. Sér. Math. 4, 17–26 (1940)

    MathSciNet  MATH  Google Scholar 

  7. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carrier, G.F.: On the non-linear vibration problem of the elastic string. Quart. Appl. Math 3, 157–165 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cherfils, L., Il’yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with \(p\) &\(q\)-Laplacian. Commun. Pure Appl. Anal. 4(1), 9–22 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cingolani, S., Lazzo, M.: Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions. J. Differ. Equ. 160(1), 118–138 (2000)

    Article  MATH  Google Scholar 

  11. Costa, G.S., Figueiredo, G.M.: Existence and concentration of positive solutions for a critical \(p\) &\(q\) equation. Adv. Nonlinear Anal. 11(1), 243–267 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Damascelli, L.: Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonity results. Ann. Inst. Henri Poinc. Nonlinear Anal. 15(4), 493–516 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fan, H.L.: Positive solutions for a Kirchhoff-type problem involving multiple competitive potentials and critical Sobolev exponent. Nonlinear Anal. 198, 111869 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Figueiredo, G.M., Vetro, C.: The existence of solutions for the modified (p(x), q(x))-Kirchhoff equation. Electron. J. Qual. Theory Differ. Equ. 2022, 1–16 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, C.J., Li, G.B.: The regularity of weak solutions to nonlinear scalar field elliptic equations containing \(p\) &\(q\)-Laplacians. Ann. Acad. Sci. Fenn. Math. 33(2), 337–371 (2008)

    MathSciNet  MATH  Google Scholar 

  17. He, Y., Li, G.B.: Standing waves for a class of Kirchhoff type problems in \({\mathbb{R} }^{3}\) involving critical Sobolev exponents Calc. Var. Partial Differ. Equ. 54(3), 3067–3106 (2015)

    Article  MATH  Google Scholar 

  18. He, X.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \({\mathbb{R} }^{3}\). J. Differ. Equ. 252, 1813–1834 (2012)

    Article  MATH  Google Scholar 

  19. Jia, H.J., Li, G.B.: Multiplicity and concentration behaviour of positive solutions for Schrödinger-Kirchhoff type equations involving the \(p\)-Laplacian in \({\mathbb{R} }^{N}\). Acta Math. Sci. Ser. B 38(2), 391–418 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kirchhoff, G.: Vorlesungen über Mathematische Physik. Mechanik. Teubner, Leipzig (1876)

    MATH  Google Scholar 

  21. Li, S., Liang, S., Song, Y., Repovš, D.D.: On critical exponential Kirchhoff systems on the Heisenberg group. Rend. Circ. Mat. Palermo II. Ser (2022)

  22. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nhan, N.H., Ngoc, L.T.P., Long, N.T.: On a nonlinear wave equation of Kirchhoff–Carrier type: linear approximation and asymptotic expansion of solution in a small parameter. Math. Probl. Eng. 2018, 3626543 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Poho\(\check{z}\)aev, S.I.: A certain class of quasilinear hyperbolic equations. Mat. Sb. 96, 152–166 (1975)

  25. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Szulkin, A., Weth, T.: The method of Nehari manifold. In: Gao, D.Y., Montreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 597–632. International Press, Boston (2010)

    MATH  Google Scholar 

  27. Sun, X., Yang, B., Song, Y.: Multiplicity of solutions for the noncooperative Choquard-Kirchhoff system involving Hardy–Littlewood–Sobolev critical exponent on the Heisenberg group. Rend. Circ. Mat. Palermo II. Ser (2022)

  28. Trudinger, N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Commun. Pure Appl. Math. 20, 721–747 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, J., Tian, L.X., Xu, J.X., Zhang, F.B.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253(7), 2314–2351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, J., Zhang, W.: Semiclassical states for coupled nonlinear Schrödinger system with competing potentials. J. Geom. Anal. 32, 114 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, J., Zhang, W.: Multiplicity and concentration of positive solutions for fractional unbalanced double phase problems. J. Geom. Anal. 32, 235 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, J., Zhang, W., Rǎdulescu, V.D.: Double phase problems with competing potentials: concentration and multiplication of ground states. Math. Z. 301(4), 4037–4078 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, W., Zhang, J., Rǎdulescu, V.D.: Concentrating solutions for singularly perturbed double phase problems with nonlocal reaction. J. Differ. Equ. 347, 56–103 (2023)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor and three reviewers for their valuable advice and for helping us improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Each of the authors contributed to each part of this study equally, all authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiabin Zuo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jiabin Zuo is supported by Guangdong Basic and Applied Basic Research Foundation and Peihao Zhao is supported by National Natural Science Foundation of China (No. 11471147).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zuo, J. & Zhao, P. Multiplicity and Concentration of Positive Solutions for (pq)-Kirchhoff Type Problems. J Geom Anal 33, 159 (2023). https://doi.org/10.1007/s12220-023-01212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01212-1

Keywords

Mathematics Subject Classification

Navigation