Skip to main content
Log in

A Meyer–Vietoris Formula for the Determinant of the Dirichlet-to-Neumann Operator on Riemann Surfaces

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

This paper presents a Meyer–Vietoris type gluing formula for a conformal invariant of a Riemannian surface with boundary that is defined by the determinant of the Dirichlet-to-Neumann operator. The formula is used to bound the asymptotics of the invariant under degeneration. It is shown that the associated height function on the moduli space of hyperbolic surfaces with geodesic boundary is proper only in genus zero. Properness implies a compactness theorem for Steklov isospectral metrics in the case of genus zero. The formula also provides asymptotics for the determinant of the Laplacian with Dirichlet or Neumann boundary conditions. For the proof, we derive an extension of Kirchhoff’s weighted matrix tree theorem for graph Laplacians with an external potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Graph Laplacians will appear throughout the paper. Notation and the relevant results can be found in Sect. 6, which is independent of the other sections of this paper.

References

  1. Alvarez, O.: Theory of strings with boundaries: fluctuations, topology and quantum geometry. Nuclear Phys. B 216(1), 125–184 (1983)

    Article  MathSciNet  Google Scholar 

  2. Burger, M.: Small eigenvalues of Riemann surfaces and graphs. Math. Z. 205(3), 395–420 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burghelea, D., Friedlander, L., Kappeler, T.: Meyer-Vietoris type formula for determinants of elliptic differential operators. J. Funct. Anal. 107(1), 34–65 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Colbois, B., Girouard, A., Gordon, C., Sher, D.: Some recent developments on the Steklov eigenvalue problem (2022 ) (In preparation)

  5. Dodziuk, Jozef, Pignataro, Thea, Randol, Burton, Sullivan, Dennis: Estimating small eigenvalues of Riemann surfaces. In The legacy of Sonya Kovalevskaya (Cambridge, Mass., and Amherst, Mass., 1985), volume 64 of Contemp. Math., pages 93–121. Amer. Math. Soc., Providence, RI, 1987

  6. Edward, J.: Pre-compactness of isospectral sets for the Neumann operator on planar domains. Commun. Partial Differ. Eq. 18(7–8), 1249–1270 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Edward, J., Siye, W.: Determinant of the Neumann operator on smooth Jordan curves. Proc. Am. Math. Soc. 111(2), 357–363 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Forman, R.: Functional determinants and geometry. Invent. Math. 88(3), 447–493 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Friedlander, L., Guillemin, V.: Determinants of zeroth order operators. J. Differ. Geom. 78(1), 1–12 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Girouard, A., Parnovski, L., Polterovich, I., Sher, D.A.: The Steklov spectrum of surfaces: asymptotics and invariants. Math. Proc. Cambridge Philos. Soc. 157(3), 379–389 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Girouard, A., Polterovich, I.: Spectral geometry of the Steklov problem (survey article). J. Spectr. Theory 7(2), 321–359 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guillarmou, C., Guillopé, L.: The determinant of the Dirichlet-to-Neumann map for surfaces with boundary. Int. Math. Res. Not. IMRN 22:Art. ID rnm099, 26 (2007)

  13. Henkin, G., Michel, V.: On the explicit reconstruction of a Riemann surface from its Dirichlet-Neumann operator. Geom. Funct. Anal. 17(1), 116–155 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jollivet, A., Sharafutdinov, V.: On an inverse problem for the Steklov spectrum of a Riemannian surface. In: Inverse Problems and Applications, vol. 615 of Contemp. Math., pp. 165–191. Amer. Math. Soc., Providence, RI (2014)

  15. Jollivet, A., Sharafutdinov, V.: Steklov zeta-invariants and a compactness theorem for isospectral families of planar domains. J. Funct. Anal. 275(7), 1712–1755 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Keen, L.: Collars on Riemann surfaces. In: Discontinuous Groups and Riemann Surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), vol. 79, pp. 263–268. Ann. of Math. Studies (1974)

  17. Khuri, H.H.: Heights on the moduli space of Riemann surfaces with circle boundaries. Duke Math. J. 64(3), 555–570 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim, Y.-H.: Surfaces with boundary: their uniformizations, determinants of Laplacians, and isospectrality. Duke Math. J. 144(1), 73–107 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Article  Google Scholar 

  20. Kontsevich, M., Vishik, S.: Geometry of determinants of elliptic operators. In: Functional Analysis on the Eve of the 21st Century, vol. 1 (New Brunswick, NJ, 1993), vol. 131 of Progr. Math., pp. 173–197. Birkhäuser (1993)

  21. Lassas, M., Uhlmann, G.: On determining a Riemannian manifold from the Dirichlet-to-Neumann map. Ann. Sci. École Norm. Sup. (4) 34(5), 771–787 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Osgood, B., Phillips, R., Sarnak, P.: Moduli space, heights and isospectral sets of plane domains. Ann. Math. (2) 129(2), 293–362 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ray, D.B., Singer, I.M.: Analytic torsion for complex manifolds. Ann. Math. 2(98), 154–177 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schoen, R., Wolpert, S., Yau, S.T.: Geometric bounds on the low eigenvalues of a compact surface. In Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, pp. 279–285. Amer. Math. Soc., Providence, RI (1980)

  25. Seeley, R.: The resolvent of an elliptic boundary problem. Am. J. Math. 91, 889–920 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  26. Seeley, R.T.: Complex powers of an elliptic operator. In: Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), pp. 288–307. Amer. Math. Soc., Providence, RI (1967)

  27. Tutte, W.T.: Graph Theory, vol. 21 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2001). With a foreword by Crispin St. J. A. Nash-Williams, Reprint of the 1984 original

  28. Weisberger, W.I.: Conformal invariants for determinants of Laplacians on Riemann surfaces. Commun. Math. Phys. 112(4), 633–638 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wentworth, R.A.: Asymptotics of determinants from functional integration. J. Math. Phys. 32(7), 1767–1773 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wentworth, R.A.: Precise constants in bosonization formulas on Riemann surfaces. I. Commun. Math. Phys. 282(2), 339–355 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wentworth, R.A.: Gluing formulas for determinants of Dolbeault Laplacians on Riemann surfaces. Commun. Anal. Geom. 20(3), 455–499 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wolpert, S.A.: Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces. Commun. Math. Phys. 112(2), 283–315 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wolpert, S.A.: The hyperbolic metric and the geometry of the universal curve. J. Differ. Geom. 31(2), 417–472 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the editors for putting together this special volume. He also thanks Jean Lagacé and David Sher for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Wentworth.

Additional information

Dedicated to Peter Li on the occasion of his 70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author gratefully acknowledges support from NSF Grants DMS-1906403 and DMS-2204346.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wentworth, R.A. A Meyer–Vietoris Formula for the Determinant of the Dirichlet-to-Neumann Operator on Riemann Surfaces. J Geom Anal 33, 51 (2023). https://doi.org/10.1007/s12220-022-01097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01097-6

Keywords

Mathematics Subject Classification

Navigation