Skip to main content
Log in

Global Gradient Estimates for a General Type of Nonlinear Parabolic Equations

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We provide global gradient estimates for solutions to a general type of nonlinear parabolic equations, possibly in a Riemannian geometry setting. Our result is new in comparison with the existing ones in the literature, in light of the validity of the estimates in the global domain, and it detects several additional regularity effects due to special parabolic data. Moreover, our result comprises a large number of nonlinear sources treated by a unified approach, and it recovers many classical results as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For completeness we will provide a proof of (3.7) in the appendix.

  2. We think that there are some typos in Theorem 1.1 in [22], since the claim “Then in \(Q_{R,T}\)” should read “in \(Q_{R/2,T/2}\)”. The necessity of reducing the domain in [22] comes from formula (2.11) there. In addition, it seems there could be some constants missing in formula (1.5), and also in formula (1.6) when \(\lambda >0\) and \(\alpha <0\) of [22], since one term has a negative sign (these constants should probably have appeared in formulas (2.20) and (2.26) in [22] and the proof should take care of the delicate situation in which the maximal point there occurs on small values of the cut-off function). To avoid confusion, we do not include the unclear formulas in our version of the main theorem of [22]. On the other hand, it seems to us that the cases \(\lambda =0\), \(\alpha =0\) and \(\alpha =1\), which were in principle omitted in the original formulation of Theorem 1.1 in [22], can be included without extra effort, hence these cases are explicitly present in the formulation given here.

  3. See also the enhanced version of [5] available on http://cvgmt.sns.it/paper/3135/

References

  1. Attouchi, A.: Gradient estimate and a Liouville theorem for a \(p\)-Laplacian evolution equation with a gradient nonlinearity. Differ. Integr. Equ. 29(1–2), 137–150 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Cabré, X., Dipierro, S., Valdinoci, E.: The Bernstein technique for integro-differential equations, arXiv e-prints, available at 2010.00376 (2020)

  3. Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications, vol. 43. American Mathematical Society, Providence, RI (1995)

    MATH  Google Scholar 

  4. Caffarelli, L., Garofalo, N., Segàla, F.: A gradient bound for entire solutions of quasi-linear equations and its consequences. Commun. Pure Appl. Math. 47(11), 1457–1473 (1994). https://doi.org/10.1002/cpa.3160471103

    Article  MathSciNet  MATH  Google Scholar 

  5. Castorina, D., Mantegazza, C.: Ancient solutions of semilinear heat equations on Riemannian manifolds. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28(1), 85–101 (2017). https://doi.org/10.4171/RLM/753

    Article  MathSciNet  MATH  Google Scholar 

  6. Castorina, D., Mantegazza, C.: Ancient solutions of superlinear heat equations on Riemannian manifolds. Commun. Contemp. Math. (to appear)

  7. Cavaterra, C., Dipierro, S., Farina, A., Gao, Z., Valdinoci, E.: Pointwise gradient bounds for entire solutions of elliptic equations with non-standard growth conditions and general nonlinearities. J. Differ. Equ. 270, 435–475 (2021). https://doi.org/10.1016/j.jde.2020.08.007

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Q.: Li-Yau type and Souplet-Zhang type gradient estimates of a parabolic equation for the V-Laplacian. J. Math. Anal. Appl. 463(2), 744–759 (2018). https://doi.org/10.1016/j.jmaa.2018.03.049

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28(3), 333–354 (1975). https://doi.org/10.1002/cpa.3160280303

    Article  MathSciNet  MATH  Google Scholar 

  10. Cozzi, M., Farina, A., Valdinoci, E.: Gradient bounds and rigidity results for singular, degenerate, anisotropic partial differential equations. Commun. Math. Phys. 331(1), 189–214 (2014). https://doi.org/10.1007/s00220-014-2107-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Dipierro, S., Gao, Z., Valdinoci, E.: Global gradient estimates for nonlinear parabolic operators. ESAIM Control Optim. Calc. Var., 27, Paper No. 21, 37 (2021). https://doi.org/10.1051/cocv/2021016

  12. Dung, N.T., Khanh, N.N.: Gradient estimates of Hamilton-Souplet-Zhang type for a general heat equation on Riemannian manifolds. Arch. Math. 105(5), 479–490 (2015). https://doi.org/10.1007/s00013-015-0828-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Dung, N.T., Khanh, N.N., Ngô, Q.A.: Gradient estimates for some \(f\)-heat equations driven by Lichnerowicz’s equation on complete smooth metric measure spaces. Manuscr. Math. 155(3–4), 471–501 (2018). https://doi.org/10.1007/s00229-017-0946-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Dung, H.T., Dung, N.T.: Sharp gradient estimates for a heat equation in Riemannian manifolds. Proc. Am. Math. Soc. 147(12), 5329–5338 (2019). https://doi.org/10.1090/proc/14645

    Article  MathSciNet  MATH  Google Scholar 

  15. Farina, A., Enrico, V.: A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature. Adv. Math. 225(5), 2808–2827 (2010). https://doi.org/10.1016/j.aim.2010.05.008

    Article  MathSciNet  MATH  Google Scholar 

  16. Farina, A., Valdinoci, E.: A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discret. Contin. Dyn. Syst. 30(4), 1139–1144 (2011). https://doi.org/10.3934/dcds.2011.30.1139

    Article  MathSciNet  MATH  Google Scholar 

  17. Hamilton, R.S.: A matrix Harnack estimate for the heat equation. Commun. Anal. Geom. 1(1), 113–126 (1993). https://doi.org/10.4310/CAG.1993.v1.n1.a6

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, G., Ma, B.: Hamilton’s gradient estimates of porous medium and fast diffusion equations. Geom. Dedic. 188, 1–16 (2017). https://doi.org/10.1007/s10711-016-0201-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, X.: Gradient estimate for a nonlinear heat equation on Riemannian manifolds. Proc. Am. Math. Soc. 144(8), 3635–3642 (2016). https://doi.org/10.1090/proc/12995

    Article  MathSciNet  MATH  Google Scholar 

  20. Ladyženskaya, O.A.: Solution of the first boundary problem in the large for quasi-linear parabolic equations. Trudy Moskov. Mat. Obšč. 7, 149–177 (1958). (Russian)

    MathSciNet  Google Scholar 

  21. Li, P., Yau, S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986). https://doi.org/10.1007/BF02399203

    Article  MathSciNet  Google Scholar 

  22. Ma, B., Zeng, F.: Hamilton-Souplet-Zhang’s gradient estimates and Liouville theorems for a nonlinear parabolic equation. C. R. Math. Acad. Sci. Paris Ser. I 356(5), 550–557 (2018). https://doi.org/10.1016/j.crma.2018.04.003

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma, L., Zhao, L., Xianfa, S.: Gradient estimate for the degenerate parabolic equation \(u_t=\Delta F(u)+H(u)\) on manifolds. J. Differ. Equ. 244(5), 1157–1177 (2008). https://doi.org/10.1016/j.jde.2007.08.014

    Article  MATH  Google Scholar 

  24. Modica, L.: A gradient bound and a Liouville theorem for nonlinear Poisson equations. Commun. Pure Appl. Math. 38(5), 679–684 (1985). https://doi.org/10.1002/cpa.3160380515

    Article  MathSciNet  MATH  Google Scholar 

  25. Oprea, J.: Differential Geometry and Its Applications, Classroom Resource Materials Series, 2nd edn. Mathematical Association of America, Washington, DC (2007)

    Book  Google Scholar 

  26. Payne, L.E.: Some remarks on maximum principles. J. Anal. Math. 30, 421–433 (1976). https://doi.org/10.1007/BF02786729

    Article  MathSciNet  MATH  Google Scholar 

  27. Petersen, P.: Riemannian Geometry. Graduate Texts in Mathematics, vol. 171. Springer, New York (1998)

    Book  Google Scholar 

  28. Serrin, J.: Gradient estimates for solutions of nonlinear elliptic and parabolic equations, Contributions to nonlinear functional analysis. In: Proceedings Symposium Mathematics Research Center, University of Wisconsin, Madison. Academic Press. New York 1971, 565–601 (1971)

  29. Sirakov, B., Souplet, P.: Liouville-type theorems for unbounded solutions of elliptic equations in half-spaces. arXiv e-prints (2020). Available at 2002.07247

  30. Souplet, P., Zhang, Q.S.: Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds. Bull. Lond. Math. Soc. 38(6), 1045–1053 (2006). https://doi.org/10.1112/S0024609306018947

    Article  MathSciNet  MATH  Google Scholar 

  31. Sperb, R.P.: Maximum Principles and Their Applications, Mathematics in Science and Engineering, 157, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York (1981)

  32. Teixeira, E.V., Urbano, J.M.: An intrinsic Liouville theorem for degenerate parabolic equations. Arch. Math. 102(5), 483–487 (2014). https://doi.org/10.1007/s00013-014-0648-y

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, J.: Gradient estimates for a nonlinear diffusion equation on complete manifolds. J. Partial Differ. Equ. 23(1), 68–79 (2010). https://doi.org/10.4208/jpde.v23.n1.4

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu, J.: Elliptic gradient estimates for a weighted heat equation and applications. Math. Z. 280(1–2), 451–468 (2015). https://doi.org/10.1007/s00209-015-1432-9

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu, X.: Gradient estimates for \(u_t=\Delta F(u)\) on manifolds and some Liouville-type theorems. J. Differ. Equ. 252(2), 1403–1420 (2012). https://doi.org/10.1016/j.jde.2011.08.004

    Article  MATH  Google Scholar 

  36. Zhu, X.: Hamilton’s gradient estimates and Liouville theorems for fast diffusion equations on noncompact Remannian manifolds. Proc. Am. Math. Soc. 139(5), 1637–1644 (2011). https://doi.org/10.1090/S0002-9939-2010-10824-9

    Article  MATH  Google Scholar 

  37. Zhu, X.: Gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds. Nonlinear Anal. 74(15), 5141–5146 (2011). https://doi.org/10.1016/j.na.2011.05.008

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhu, X.: Hamilton’s gradient estimates and Liouville theorems for porous medium equations on noncompact Riemannian manifolds. J. Math. Anal. Appl. 402(1), 201–206 (2013). https://doi.org/10.1016/j.jmaa.2013.01.018

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Cecilia Cavaterra is member of GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica). Serena Dipierro and Enrico Valdinoci are members of INdAM and AustMS. Serena Dipierro has been supported by the Australian Research Council DECRA DE180100957 “PDEs, free boundaries and applications”. Enrico Valdinoci has been supported by the Australian Laureate Fellowship FL190100081 “Minimal surfaces, free boundaries and partial differential equations”. Zu Gao has been supported by “the Fundamental Research Funds for the Central Universities (WUT: 2021IVA058)” and NSFC (Grant No. 12171379).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zu Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of (3.7)

A Proof of (3.7)

We recall that a metric \(g_{ij}\) is said to be conformal (or, more precisely, conformal to the Euclidean metric) if

$$\begin{aligned} g_{ij}=\varphi \delta _{ij}, \end{aligned}$$
(A.19)

for some scalar factor \(\varphi \). For instance, the metric of the Poincaré disk in the plane given in (3.6) is conformal, with factor \(\varphi := \frac{4\lambda ^2}{ (1-|x|^{2})^{2}}\), being \(|\cdot |\) the standard Euclidean norm.

The Laplacian operator (or, more precisely, the Laplace-Beltrami operator) possesses an explicit representation with respect to conformal metrics: roughly speaking, since conformal metrics preserve angles, an infinitesimal orthonormal frame is transformed into an infinitesimal orthogonal frame (the length of the vectors possibly being affected by the conformal factor \(\varphi \)), thus the new Laplacian (being computed as sum of second derivatives with respect to an orthonormal frame) remains the same possibly up to a “curvature” term which accounts for the variation of \(\varphi \) (this additional term pops up because the Laplacian is a second order operator). The case of dimension 2 is somewhat special, since this additional term vanishes.

Here are the explicit computations underpinning this heuristic idea. From (A.19), we have that \(g^{ij}=\varphi ^{-1}\delta ^{ij}\) and \(\det g=\varphi ^{n}\). Hence, in local coordinates, the Laplacian with respect to the conformal metrics in (A.19) is

$$\begin{aligned}&\frac{1}{\sqrt{\det g}} \sum _{i,j=1}^n \partial _i\Big ( \sqrt{\det g} \;g^{ij} \partial _j\Big )= \frac{1}{\varphi ^{\frac{n}{2}}} \sum _{i,j=1}^n \partial _i\Big ( \varphi ^{\frac{n-2}{2}} \,\delta ^{ij} \partial _j\Big )= \frac{1}{\varphi ^{\frac{n}{2}}} \sum _{i=1}^n \partial _i\Big ( \varphi ^{\frac{n-2}{2}} \partial _i\Big )\\&\qquad \qquad = \frac{1}{\varphi ^{\frac{n}{2}}} \sum _{i=1}^n \left( \frac{n-2}{2}\,\varphi ^{\frac{n-4}{2}} \partial _i\varphi \, \partial _i +\varphi ^{\frac{n-2}{2}} \partial _{ii}\right) =\sum _{i=1}^n \left( \frac{n-2}{2\,\varphi ^2} \partial _i\varphi \,\partial _i +\frac{1}{\varphi } \partial _{ii}\right) . \end{aligned}$$

In dimension 2, this boils down to

$$\begin{aligned} \frac{1}{\varphi } \,\sum _{i=1}^n \partial _{ii}, \end{aligned}$$

which is a scalar multiple of the Euclidean Laplacian, and therefore (3.7) plainly follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavaterra, C., Dipierro, S., Gao, Z. et al. Global Gradient Estimates for a General Type of Nonlinear Parabolic Equations. J Geom Anal 32, 65 (2022). https://doi.org/10.1007/s12220-021-00812-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00812-z

Keywords

Mathematics Subject Classification

Navigation