Skip to main content
Log in

Bohr Almost Periodic Sets of Toral Type

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

A locally finite multiset \((\Lambda ,c),\) \(\Lambda \subset {\mathbb {R}}^n, c : \Lambda \mapsto \{1,...,b\}\) defines a Radon measure \(\mu := \sum _{\lambda \in \Lambda } c(\lambda )\, \delta _\lambda \) that is Bohr almost periodic in the sense of Favorov if the convolution \(\mu *f\) is Bohr almost periodic for every \(f \in C_c({\mathbb {R}}^n).\) If it is of toral type: the Fourier transform \({\mathfrak {F}} \mu \) equals zero outside of a rank \(m < \infty \) subgroup, then there exists a compactification \(\psi : {\mathbb {R}}^n \mapsto {\mathbb {T}}^m\) of \(\mathbb R^n,\) a foliation of \({\mathbb {T}}^m,\) and a pair \((K,\kappa )\) where \(K := \overline{\psi (\Lambda )}\) and \(\kappa \) is a measure supported on K such that \({\mathfrak {F}} \kappa = ({\mathfrak {F}} \mu ) \circ \widehat{\psi }\) where \({\widehat{\psi }} : \widehat{{\mathbb {T}}^m} \mapsto \widehat{{\mathbb {R}}^n}\) is the Pontryagin dual of \(\psi .\) For \((\Lambda ,c)\) uniformly discrete, we prove that every connected component of K is homeomorphic to \({\mathbb {T}}^{m-n}\) embedded transverse to the foliation and the homotopy of its embedding is a rank \(m-n\) subgroup S of \({\mathbb {Z}}^m,\) and we compute its density as a function of S and \(\psi .\) For \(n = 1\) and K, a nonsingular real algebraic variety, this construction gives all Fourier quasicrystals recently characterized by Olevskii and Ulanovskii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahern, P.: Inner functions in the polydisc and measures on the torus. Mich. Math. J. 20, 33–37 (1973)

    Article  MathSciNet  Google Scholar 

  2. Baake, M.: A guide to mathematical quasicrystals. In: J. Suck, M. Schreiber, P. Häussler (eds) Quasicrystals. Springer Series in Materials Science, vol 55. Springer, Berlin (2002)

  3. Besicovitch, A.: On generalized almost periodic functions. Proc. Lond. Math. Soc. 25(2), 495–512 (1926)

    Article  MathSciNet  Google Scholar 

  4. Besicovitch, A.: Almost Periodic Functions. Dover, Mineola (1954)

    Google Scholar 

  5. Bohr, H.: Zur Theorie der fastperiodischen Funktionen I. Acta Math. 45, 29–127 (1925)

    Article  MathSciNet  Google Scholar 

  6. Bohr, H.: Zur Theorie der fastperiodischen Funktionen II. 46, 101–214 (1925)

  7. Bohr, H.: Zur Theorie der fastperiodischen Funktionen III. 47, 237–281 (1926)

  8. Bohr, H.: Almost Periodic Functions. Chelsea, New York (1951)

    MATH  Google Scholar 

  9. Delaunay, B.: Neue Darstellung der Geometrischen Kristallographie. Zeit Kristallographie 84, 109–149 (1932)

    MATH  Google Scholar 

  10. Favorov, S.: Bohr and Besicovitch almost periodic discrete sets and quasicrystals. Proc. Am. Math. Soc. 140(5), 1761–1767 (2012)

    Article  MathSciNet  Google Scholar 

  11. Favorov, S.: Fourier quasicrystals and Lagarias’ conjecture. Proc. Am. Math. Soc. 144(8), 3527–3536 (2016)

    Article  MathSciNet  Google Scholar 

  12. Favorov, S., Kolbasina, Y.: Almost periodic discrete sets. J. Math. Phys. Anal. Geom. 6(1), 34–47 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Favorov, S., Kolbasina, Y.: Perturbations of discrete lattices and almost periodic sets. Algebra Discret. Math. 9(2), 50–60 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Galiulin, R.: Zonohedral Delone systems. In: Collected Abstracts. XII European Crystallog. Meeting, Moscow, Vol. I , 21 (1989)

  15. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  16. Kurasov, P., Sarnak, P.: Stable polynomials and crystaline measure. J. Math. Phys. 61, no. 8, 084501 (2020)

  17. Lagarias, J.: Meyer’s concept of quasicrystal and quasiregular Sets. Commun. Math. Phys. 179, 365–376 (1996)

    Article  MathSciNet  Google Scholar 

  18. Lagarias, J.: Mathematical quasicrystals and the problem of diffraction. In: Baake, M., Moody, R. (eds) Directions in Mathematical Quasicrystals, CRM Monograph Series, Vol. 13, AMS, Providence RI, 61–93 (2000)

  19. Lawton, W.: Proof of the hyperplane zeros conjecture of Lagarias and Wang. J. Four. Anal. App. 14(4), 588–605 (2008). arXiv:math/0703249

  20. Lee, T., Yang, C.: Statistical theory of equations of state and phase transitions. Phys. Rev. 87, 404–419 (1952)

    Article  MathSciNet  Google Scholar 

  21. Lev, N., Olevskii, A.: Quasicrystals and Poisson’s summation formula. Invent. Math. 2014, 585–606 (2000). https://doi.org/10.1007/s00222-014-0542-z

    Article  MathSciNet  MATH  Google Scholar 

  22. Lev, N., Olevskii, A.: Lev, Quasicrystals with discrete support and spectrum. Revista Mat. Iberoam. 32(4), 1341–1352 (2016)

    Article  MathSciNet  Google Scholar 

  23. Lev, N., Olevskii, A.: Fourier quasicrystals and discreteness of the diffraction spectrum. Adv. Math. 315, 1–26 (2017)

    Article  MathSciNet  Google Scholar 

  24. Meyer, Y.: Nombres de Pisot, Nombres de Salem, et analyse harmonique. Lecture Notes in Math. No. 117, Springer, Berlin (1970)

  25. Meyer, Y.: Algebraic Numbers and Harmonic Analysis. North-Holland, Amsterdam (1972)

    MATH  Google Scholar 

  26. Meyer, Y.: Quasicrystals, diophantine approximation and algebraic numbers. In: Axel, F. , Gratias, D. (eds.) Beyond Quasicrystals. Les Editions de Physique. Springer, Berlin, 3–16 (1995)

  27. Meyer, Y.: Measures with locally finite support and spectrum. Proc. Natl. Acad. Sci. USA 113(12), 31523158 (2016). https://doi.org/10.1073/pnas.1600685113

    Article  MathSciNet  Google Scholar 

  28. Meyer, Y.: Curved model sets and crystalline measures. In: Applied and Numerical Harmonic Analysis. Springer, Berlin (2021)

  29. Meyer, Y.: Crystalline measures in two dimensions. In: Publictions Matemàtiques, Springer, Berlin (2021)

  30. Moody, R.: Meyer sets and the finite generation of quasicrystals. In: Gruber, B. (ed.) Symmetries in Science VIII. Plenum, New York (1995)

    Google Scholar 

  31. Newman, M.: Integral Matrices. Academic Press, New York (1972)

    MATH  Google Scholar 

  32. Olevskii, A., Ulanovskii, A.: A simple crystalline measure (2000). arXiv:2006.12037

  33. Olevskii, A., Ulanovskii, A.: Fourier quasicrystals with unit masses. Comptes Rendus Matématique 358(11–12), 1207–1211 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Rudin, W.: Fourier Analysis on Groups. Interscience, Geneva (1962)

    MATH  Google Scholar 

  35. Schectman, D., Bloch, I., Gratius, D., Cahn, J.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1953–1953 (1984)

    Google Scholar 

  36. Schwartz, L.: Théorie des Disributions. I, II. Herman, Paris (1957)

    Google Scholar 

  37. Smith, H.: On systems of linear indeterminate equations and congruences. Phil. Trans. R. Soc. Lond. 151(1), 293–326 (1861)

    Google Scholar 

  38. Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  39. Titchmarsh, E.: The zeros of certain integral functions. Proc. Lond. Math. Soc. 25, 283–302 (1926)

    Article  MathSciNet  Google Scholar 

  40. Tréves, F.: Topological Vector Spaces, Distributions, and Kernels. Dover, Mineola (2006)

    MATH  Google Scholar 

  41. Tsikh, A.: Multidimensional Residues and Their Applications, Translations of Mathematical Monographs, Volume 103, American Mathematical Society Providence (1991)

  42. Voronoï, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. J. Reine Angew. Math. 134, 198–287 (1908)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Alexander Olevskii, Yves Meyer, and Peter Sarnak for sharing their knowledge of crystaline measures and Fourier quasicrystals and August Tsikh for suggesting multidimensional residues. Special thanks go to the reviewer whose precise criticisms enabled substantial improvements to the paper.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry of Science and Higher Education of the Russian Federation in the framework of the establishment and development of Regional Centers for Mathematics Research and Education (Agreement No. 075-02-2020-1534/1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawton, W.M. Bohr Almost Periodic Sets of Toral Type. J Geom Anal 32, 60 (2022). https://doi.org/10.1007/s12220-021-00807-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00807-w

Keywords

Mathematics Subject Classification

Navigation