Skip to main content
Log in

Stability for a Second Type Partitioning Problem

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study stability and instability problem for type-II partitioning problem. First, we make a complete classification of stable type-II stationary hypersurfaces in a ball in a space form as totally geodesic n-balls. Second, for general ambient spaces and convex domains, we give some topological restriction for type-II stable stationary immersed surfaces in two dimension. Third, we give a lower bound for the Morse index for type-II stationary hypersurfaces in terms of their topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Wetting boundary means for the boundary part on \(\partial B\). The word “wetting” comes from the physical model of capillary surfaces.

References

  1. Ahlfors, L.: Open Riemann surfaces and extremal problems on compact subregions. Comment. Math. Helv. 24, 100–134 (1950)

    Article  MathSciNet  Google Scholar 

  2. Ainouz, A., Souam, R.: Stable capillary hypersurfaces in a half-space or a slab. Indiana Univ. Math. J. 65(3), 813–831 (2016)

    Article  MathSciNet  Google Scholar 

  3. Ambrozio, L., Carlotto, A., Sharp, B.: Comparing the Morse index and the first Betti number of minimal hypersurfaces. J. Differ. Geom. 108(3), 379–410 (2018)

    Article  MathSciNet  Google Scholar 

  4. Ambrozio, L., Carlotto, A., Sharp, B.: Index estimates for free boundary minimal hypersurfaces. Math. Ann. 370, 1063–1078 (2018)

    Article  MathSciNet  Google Scholar 

  5. Barbosa, E.: On CMC free-boundary stable hypersurfaces in a Euclidean ball. Math. Ann. 372, 179–187 (2018)

    Article  MathSciNet  Google Scholar 

  6. Barbosa, L., Bérard, P.: A “twisted” eigenvalue problem and applications to geometry. J. Math. Pures Appl. 79, 427–450 (2000)

    Article  MathSciNet  Google Scholar 

  7. Barbosa, J.L., do Carmo, M.: Stability of hypersurfaces with constant mean curvature. Math. Z. 185, 339–353 (1984)

    Article  MathSciNet  Google Scholar 

  8. Barbosa, J.L., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197, 123–138 (1988)

    Article  MathSciNet  Google Scholar 

  9. Bokowsky, J., Sperner, E.: Zerlegung konvexer Körper durch minimale Trennflächen. J. Reine Angew. Math. 311(312), 80–100 (1979)

    MathSciNet  MATH  Google Scholar 

  10. Burago, Y.D., Maz’ya, V.G.: Some questions of potential theory and function theory for domains with non-regular boundaries, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 3 (1967) (in Russian). English translation: Semin. Math. Steklov Math. Inst. Leningr. 3. Consultants Bureau, New York (1969)

  11. Burago, Y.D., Zalgaller, V.A.: Geometric Inequalities, Translated from the Russian by A. B. Sosinski. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer Series in Soviet Mathematics, vol. 285. Springer, Berlin (1988)

  12. Cavalcante, M.P., de Oliveira, D.F.: Index estimates for free boundary constant mean curvature surfaces. Pac. J. Math. (to appear). arXiv:1803.05995

  13. Cavalcante, M.P., de Oliveira, D.F.: Lower bounds for the index of compact constant mean curvature surfaces in \({\mathbb{R}}^3\) and \({\mathbb{S}}^3\), Revista Matemática Iberoamericana (to appear). arXiv:1711.07233

  14. Fraser, A., Schoen, R.: The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math. 226(5), 4011–4030 (2011)

    Article  MathSciNet  Google Scholar 

  15. Fraser, A., Schoen, R.: Uniqueness theorems for free boundary minimal disks in space forms. Int. Math. Res. Not. 17, 8268–8274 (2015)

    Article  MathSciNet  Google Scholar 

  16. Fraser, A., Schoen, R.: Sharp eigenvalue bounds and minimal surfaces in the ball. Invent. Math. 203(3), 823–890 (2016)

    Article  MathSciNet  Google Scholar 

  17. Gabard, A.: Sur la représentation conforme des surfaces de Riemann á bord et une caractérisation des courbes séparantes. Comment. Math. Helv 81, 945–964 (2006)

    Article  MathSciNet  Google Scholar 

  18. Griffiths, J., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  19. Hersch, J.: Quatre propriétés isopérimétriques de membranes sphériques homogenes. C. R. Acad. Sci. Paris SšŠr 270, 1645–1648 (1970)

    MATH  Google Scholar 

  20. Li, P., Yau, S.T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69(2), 269–291 (1982)

    Article  MathSciNet  Google Scholar 

  21. Maz’ya, V.G.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  22. Nitsche, J.: Stationary partitioning of convex bodies. Arch. Rat. Mech. Anal. 89, 1–19 (1985)

    Article  MathSciNet  Google Scholar 

  23. Nunes, I.: On stable constant mean curvature surfaces with free boundary. Math. Z 287(1–2), 473–479 (2017)

    Article  MathSciNet  Google Scholar 

  24. Ros, A.: One-sided complete stable minimal surfaces. J. Differ. Geom. 74(1), 69–92 (2006)

    Article  MathSciNet  Google Scholar 

  25. Ros, A.: Stability of minimal and constant mean curvature surfaces with free boundary. Mat. Contemp. 35, 221–240 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Ros, A., Souam, R.: On stability of capillary surfaces in a ball. Pac. J. Math. 178(2), 345–361 (1997)

    Article  MathSciNet  Google Scholar 

  27. Ros, A., Vergasta, E.: Stability for hypersurfaces of constant mean curvature with free boundary. Geom. Dedicata 56, 19–33 (1995)

    Article  MathSciNet  Google Scholar 

  28. Rosenberg, H.: Hypersurfaces of constant curvature in space forms. Bull. Sci. Math \(2^{e}\) serie. 117, 211–239 (1993)

  29. Rossman, W.: The Morse index of Wente tori. Geom. Dedicata 86(1–3), 129–151 (2001)

    Article  MathSciNet  Google Scholar 

  30. Savo, A.: Index bounds for minimal hypersurfaces of the sphere. Indiana Univ. Math. J. 59(3), 823–837 (2010)

    Article  MathSciNet  Google Scholar 

  31. Sternberg, P., Zumbrun, K.: A Poincaré inequality with applications to volume-constrained area-minimizing surfaces. J. Reine Angew. Math. 503, 63–85 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Wang, G., Xia, C.: Uniqueness of stable capillary hypersurfaces in a ball. Math. Ann. 374(3–4), 1845–1882 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC (Grant No. 11871406), the Natural Science Foundation of Fujian Province of China (Grant No. 2017J06003), and the Fundamental Research Funds for the Central Universities (Grant No. 20720180009).

Appendix A: Second Variational Formula

Appendix A: Second Variational Formula

In this appendix, we prove Proposition 2.2, namely, the second variation formula of area functional (2.7) under admissible wetting-area-preserving variations. For simplicity, we use \(\langle \cdot , \cdot \rangle \) to denote all the inner products in the following computation. The computation is very close to the one by Ros–Souam [26].

Firstly, applying the admissible condition, (2.4) and (2.5), we get

$$\begin{aligned} 0=\langle Y,{\bar{N}}\rangle =\langle Y, \sin \theta \,\mu -\cos \theta \,\,\nu \rangle =\sin \theta \,\langle Y,\mu \rangle -\varphi \cos \theta \,\quad \text {on}\,\,\partial M, \end{aligned}$$

Therefore,

$$\begin{aligned} \langle Y,\mu \rangle =\varphi \, \cot \theta \, \quad \text {on}\,\,\partial M. \end{aligned}$$
(A.1)

So we can define

$$\begin{aligned} Y=Y_{0}+\varphi \nu \triangleq Y_{1}+\cot \theta \, \varphi \mu +\varphi \nu \end{aligned}$$
(A.2)

where \(Y_{1}\) denotes the tangent part of Y to \(\partial M\).

On the other hand, from

$$\begin{aligned} {\bar{\nu }}=\cos \theta \, \mu + \sin \theta \,\nu , \end{aligned}$$

we see Y can be also expressed as follows

$$\begin{aligned} Y=Y_{1}+\frac{\varphi }{\sin \theta }(\cos \theta \,\mu +\sin \theta \nu )=Y_{1}+\frac{\varphi }{\sin \theta }{\bar{\nu }}. \end{aligned}$$
(A.3)

We use a prime to denote the time derivative at \(t=0\) in the following.

Proposition A.1

[26] Let \({\tilde{\nabla }}\) denote the gradient on \(\partial M\) for the metric induced by x and \(Y_{0}\) (resp. \(Y_{1}\)) the tangent part of Y to M (resp. to \(\partial M\)). Let also \(S_{0}\), \(S_{1}\), and \(S_{2}\) denote, respectively, the shape operator of M in \({\overline{M}}\) with respect to \(\nu \), of \(\partial M\) in M with respect to \(\mu \) and of \(\partial M\) in \(\partial B\) with respect to \({\bar{\nu }}\). Then

  1. (1)

    \(\nu '=S_{0}(Y_{0})-\nabla \varphi .\)

  2. (2)

    \(\mu '=-(h(Y_{0},\mu )+\nabla _{\mu }\varphi )\nu -\varphi S_{0}(\mu )+\varphi h(\mu , \mu )\mu +S_{1}(Y_{1})-\cot \theta \,{\tilde{\nabla }}\varphi .\)

  3. (3)

    \({\bar{\nu }}'=-h^{\partial B}(Y,{\bar{\nu }}){\bar{N}}+S_{2}(Y_{1})-\frac{1}{\sin \theta }{\tilde{\nabla }}\varphi .\)

Proof

to prove (1), let \(\{e_{i}\}_{i=1}^{n}\) be an orthonormal basis of \(T_{p}M\) for some \(p\in M\). Put \(e_{i}(t)=(x(t,\cdot ))_{*}(e_{i})\), then using the fact \(\langle e_{i}(t),\nu (t)\rangle =0\) and \([e_{i}(t), Y(t)]=0\), we have

$$\begin{aligned} \nu '&=\sum _{i=1}^{n}\langle \nu ', e_{i}\rangle e_{i}=-\sum _{i=1}^{n}\langle \nu , e_{i}'\rangle e_{i} \\&=-\sum _{i=1}^{n}\langle \nu , {{\bar{\nabla }}}_{e_{i}}Y\rangle e_{i}=-\sum _{i=1}^{n}\langle \nu ,{{\bar{\nabla }}}_{e_{i}}(Y_{0}+\varphi \nu ) \rangle e_{i} \\&=\sum _{i=1}^{n}\langle S_{0}(Y_{0}), e_{i}\rangle e_{i}-\sum _{i=1}^{n}d\varphi (e_{i})e_{i} \\&=S_{0}(Y_{0})-\nabla \varphi \end{aligned}$$

As a consequence of (1), we get

$$\begin{aligned} \langle \mu ',\nu \rangle =-\langle \mu ,\nu '\rangle =-h(Y_{0}, \mu )+\nabla _{\mu }\varphi . \end{aligned}$$
(A.4)

Let now \(\{T_\alpha \}_{\alpha =1}^{n-1}\) be an orthonormal basis of \(T_{p}(\partial M)\) for some \(p\in \partial M\). As before, put \(T_\alpha (t)=(x(t,\cdot ))_{*}(T_\alpha )\), then we can use (A.2) and \([T_\alpha (t), Y(t)]=0\)

$$\begin{aligned} \langle \mu ', T_\alpha \rangle&=-\langle \mu ,T'_{\alpha }\rangle =-\langle \mu ,{{\bar{\nabla }}}_{T_\alpha }Y\rangle =-\langle \mu , {{\bar{\nabla }}}_{T_\alpha }(Y_{1}+\cot \theta \, \varphi \mu +\varphi \nu )\rangle \nonumber \\&=-\langle \mu , {{\bar{\nabla }}}_{T_\alpha }Y_{1}\rangle -\cot \theta \, d\varphi (T_\alpha )-\varphi \langle \mu , {{\bar{\nabla }}}_{T_\alpha }\nu \rangle \end{aligned}$$
(A.5)

Thanks to (A.4) and (A.5), we have

$$\begin{aligned} \mu '&=\langle \mu ',\mu \rangle \mu +\langle \mu ', \nu \rangle \nu +\sum _{\alpha =1}^{n-1}\langle \mu ', T_\alpha \rangle T_\alpha \nonumber \\&=(-h(Y_{0}, \mu )+\nabla _{\mu }\varphi )\nu -\sum _{\alpha =1}^{n-1}\langle \mu , {{\bar{\nabla }}}_{T_\alpha }Y_{1}\rangle T_\alpha -\cot \theta \,\sum _{\alpha =1}^{n-1}d\varphi (T_\alpha )T_\alpha \nonumber \\&\quad -\varphi \sum _{\alpha =1}^{n-1}\langle S_{0}(\mu ), T_\alpha \rangle T_\alpha \nonumber \\&=(-h(Y_{0}, \mu )+\nabla _{\mu }\varphi )\nu +S_{1}(Y_{1})-\cot \theta \,{\tilde{\nabla }}\varphi -\varphi (S_{0}(\mu )-h(\mu ,\mu )\mu ) \end{aligned}$$
(A.6)

The formula (2) follows from (A.6).

To prove (3), we use \([T_\alpha (t), Y(t)]=0\) again and (A.3)

$$\begin{aligned} \langle {\bar{\nu }}',T_\alpha \rangle&=-\langle {\bar{\nu }},T'_{\alpha }\rangle =-\langle {\bar{\nu }},{{\bar{\nabla }}}_{T_\alpha }Y\rangle \nonumber \\&=-\langle {\bar{\nu }},{{\bar{\nabla }}}_{T_\alpha }Y_{1}\rangle -\frac{1}{\sin \theta }\,d\varphi (T_\alpha )\nonumber \\&=\langle S_{2}(Y_{1}),T_\alpha \rangle -\frac{1}{\sin \theta }\,d\varphi (T_\alpha ) \end{aligned}$$
(A.7)

Therefore, the formula (3) now follows from (A.7) and the fact \(\langle {\bar{\nu }}',{\bar{N}}\rangle =-h^{\partial B}(Y,{\bar{\nu }}).\) \(\square \)

Proposition A.2

$$\begin{aligned} \langle S_{1}(Y_{1}),Y_{1}\rangle -\cot \theta \,\langle {\tilde{\nabla }}\varphi ,Y_{1}\rangle =\cos \theta \,\,\langle Y, {\bar{\nu }}'\rangle +\sin \theta \,h^{\partial B}(Y_{1},Y_{1})\quad \text {along} \quad \partial M.\quad \end{aligned}$$

Proof

By Proposition A.1 (3) and the fact \(\langle Y,{\bar{N}}\rangle =0\), we have

$$\begin{aligned} \cos \theta \,\,\langle Y,{\bar{\nu }}'\rangle&=\cos \theta \,\langle Y,-h^{\partial B}(Y,{\bar{\nu }}){\bar{N}}+S_{2}(Y_{1})-\frac{1}{\sin \theta }{\tilde{\nabla }}\varphi \rangle \nonumber \\&=\langle D_{Y_{1}}(\cos \theta \,{\bar{\nu }}), Y_{1}\rangle -\cot \theta \,\langle {\tilde{\nabla }}\varphi ,Y_{1}\rangle \nonumber \\&=\langle D_{Y_{1}}(\mu -\sin \theta {\bar{N}}),Y_{1}\rangle -\cot \theta \,\langle {\tilde{\nabla }}\varphi ,Y_{1}\rangle \nonumber \\&=\langle S_{1}(Y_{1}),Y_{1}\rangle -\sin \theta \,h^{\partial B}(Y_{1},Y_{1})-\cot \theta \,\langle {\tilde{\nabla }}\varphi ,Y_{1}\rangle . \end{aligned}$$
(A.8)

\(\square \)

Now we are ready to prove Proposition 2.2.

Proof of Proposition 2.2

Firstly, from (2.1), we have

$$\begin{aligned} A''(0)=\int \nolimits _{M}&H'\varphi +H\varphi '\, dA+\int \nolimits _{\partial M}\langle Y', \mu \rangle +\langle Y, \mu '\rangle ds+\int \nolimits _{\partial M}\langle Y,\mu \rangle \frac{d}{dt}\Big |_{t=0}ds_{t}. \end{aligned}$$

Notice that \(A'(0)=0\) for any wetting-area-preserving variations if and only if \(H=0\) in M and \(\theta \) is constant. Moreover, we have the well-known formula (see [28])

$$\begin{aligned} H'=-(\Delta \varphi +|h|^{2}\varphi +\overline{\mathrm{Ric}}(\nu ,\nu )\varphi ). \end{aligned}$$

It follows that

$$\begin{aligned} A''(0)&=-\int \nolimits _{M}\varphi (\Delta \varphi +|h|^{2}\varphi +\overline{\mathrm{Ric}}(\nu ,\nu )\varphi )\, dA+\int \nolimits _{\partial M}\langle Y', \mu \rangle +\langle Y, \mu '\rangle ds\nonumber \\&\quad +\int \nolimits _{\partial M}\langle Y,\mu \rangle \frac{d}{dt}\Big |_{t=0}ds_{t}. \end{aligned}$$
(A.9)

So to prove the formula for \(A''(0)\), we need to compute

$$\begin{aligned} \int \nolimits _{\partial M}\langle Y', \mu \rangle +\langle Y, \mu '\rangle ds+\int \nolimits _{\partial M}\langle Y,\mu \rangle \frac{d}{dt}\Big |_{t=0}ds_{t}. \end{aligned}$$
(A.10)

Firstly, we compute the first term of (A.10). By using (2.4), we have

$$\begin{aligned} \langle Y',\mu \rangle&=\langle Y',\sin \theta \, {\bar{N}}+\cos \theta \, {\bar{\nu }}\rangle \nonumber \\&=\sin \theta \, \langle D_{Y}Y,{\bar{N}}\rangle +\cos \theta \,\langle Y',{\bar{\nu }}\rangle \nonumber \\&=-\sin \theta \, h^{\partial B}(Y,Y)+\cos \theta \,\langle Y',{\bar{\nu }}\rangle . \end{aligned}$$
(A.11)

By (A.3), we obtain that

$$\begin{aligned} h^{\partial B}(Y,Y)= h^{\partial B}(Y_{1},Y_{1})+\frac{2\varphi }{\sin \theta }\, h^{\partial B}(Y_{1},{\bar{\nu }})+\frac{\varphi ^{2}}{\sin ^{2}\theta }\, h^{\partial B}({\bar{\nu }},{\bar{\nu }}). \end{aligned}$$
(A.12)

Applying (A.11) and (A.12), we have

$$\begin{aligned} \int \nolimits _{\partial M}\langle Y', \mu \rangle ds&=-\sin \theta \int \nolimits _{\partial M}h^{\partial B}(Y,Y)ds+\cos \theta \,\int \nolimits _{\partial M}\langle Y',{\bar{\nu }}\rangle ds\nonumber \\&=-\sin \theta \, \int \nolimits _{\partial M}h^{\partial B}(Y_{1},Y_{1})+\frac{2\varphi }{\sin \theta } \, h^{\partial B}(Y_{1},{\bar{\nu }})\nonumber \\&\quad +\frac{\varphi ^{2}}{\sin ^{2}\theta }\, h^{\partial B}({\bar{\nu }},{\bar{\nu }})ds+\cos \theta \,\int \nolimits _{\partial M}\langle Y',{\bar{\nu }}\rangle ds. \end{aligned}$$
(A.13)

On the other hand, using (2.4) and (2.5), we get

$$\begin{aligned} h(Y_{1},\mu )=\langle \mu ,{{\bar{\nabla }}}_{Y_{1}}\nu \rangle&=\langle \sin \theta {\bar{N}}+\cos \theta \,{\bar{\nu }}, {{\bar{\nabla }}}_{Y_{1}}(-\cos \theta \,{\bar{N}}+\sin \theta {\bar{\nu }})\rangle \nonumber \\&=-\langle {\bar{\nu }}, {{\bar{\nabla }}}_{Y_{1}}{\bar{N}}\rangle =-h^{\partial B}(Y_{1}, {\bar{\nu }}) \end{aligned}$$
(A.14)

Therefore, inserting (A.14) into (A.13), we get the first term of (A.10)

$$\begin{aligned} \int \nolimits _{\partial M}\langle Y', \mu \rangle ds&=-\sin \theta \int \nolimits _{\partial M}h^{\partial B}(Y,Y)\,ds+\cos \theta \,\int \nolimits _{\partial M}\langle Y',{\bar{\nu }}\rangle \,ds\nonumber \\&=-\sin \theta \int \nolimits _{\partial M}h^{\partial B}(Y_{1},Y_{1})-\frac{2\varphi }{\sin \theta } \,h(Y_{1},\mu )\nonumber \\&\quad +\frac{\varphi ^{2}}{\sin ^{2}\theta } \,h^{\partial B}({\bar{\nu }},{\bar{\nu }})ds+\cos \theta \int \nolimits _{\partial M}\langle Y',{\bar{\nu }}\rangle \,ds \end{aligned}$$
(A.15)

By Proposition A.1 (2), Proposition A.2 and (A.2), we can compute the second term of (A.10) as follow

$$\begin{aligned}&\int \nolimits _{\partial M}\langle Y, \mu '\rangle \, ds\nonumber \\&\quad =\int \nolimits _{\partial M}(-h(Y_{0},\mu )+\nabla _{\mu }\varphi )\langle Y,\nu \rangle -\varphi \langle S_{0}(\mu ), Y\rangle +\varphi h(\mu ,\mu )\langle Y,\mu \rangle \nonumber \\&\qquad +\langle S_{1}(Y_{1}),Y\rangle -\cot \theta \,\langle {\tilde{\nabla }}\varphi , Y\rangle \,ds\nonumber \\&=\int \nolimits _{\partial M}\varphi \nabla _{\mu }\varphi -2h(Y_{0},\mu )\varphi +\varphi h(\mu ,\mu )\langle Y_{1}+\cot \theta \, \varphi \mu +\varphi \nu ,\mu \rangle \nonumber \\&\qquad +\langle S_{1}(Y_{1}),Y\rangle -\cot \theta \,\langle {\tilde{\nabla }}\varphi , Y\rangle \, ds\nonumber \\&=\int \nolimits _{\partial M}\varphi \nabla _{\mu }\varphi -2h(Y_{0},\mu )\varphi +\cot \theta \, \varphi ^{2}h(\mu ,\mu )\nonumber \\&\qquad +\langle S_{1}(Y_{1}),Y\rangle -\cot \theta \,\langle {\tilde{\nabla }}\varphi , Y\rangle \,ds\nonumber \\&=\int \nolimits _{\partial M}\varphi \nabla _{\mu }\varphi -2h(Y_{1}+\cot \theta \, \varphi \mu ,\mu )\varphi +\cot \theta \, \varphi ^{2}h(\mu ,\mu )\nonumber \\&\qquad +\cos \theta \,\langle Y,{\bar{\nu }}'\rangle +\sin \theta \,h^{\partial B}(Y_{1},Y_{1})\,ds\nonumber \\&=\int \nolimits _{\partial M}\varphi \nabla _{\mu }\varphi -2h(Y_{1}, \mu )\varphi -\cot \theta \, \varphi ^{2}h(\mu ,\mu )\nonumber \\&\qquad +\cos \theta \,\langle Y,{\bar{\nu }}'\rangle +\sin \theta \,h^{\partial B}(Y_{1},Y_{1})\,ds. \end{aligned}$$
(A.16)

Next, we compute the third boundary term of (A.10) by using (2.4)

$$\begin{aligned} \int \nolimits _{\partial M}\langle Y,\mu \rangle \frac{d}{dt}\Big |_{t=0}ds_{t}= & {} \int \nolimits _{\partial M}\langle Y, \sin \theta {\bar{N}}+\cos \theta \,{\bar{\nu }}\rangle \frac{d}{dt}\Big |_{t=0}ds_{t}\nonumber \\= & {} \cos \theta \,\int \nolimits _{\partial M}\langle Y,{\bar{\nu }}\rangle \frac{d}{dt}\Big |_{t=0}ds_{t}. \end{aligned}$$
(A.17)

Therefore, putting (A.15), (A.16), (A.17) into (A.9), we get

$$\begin{aligned} A''(0)&=-\int \nolimits _{M}\varphi (\Delta \varphi +(|h|^{2}+\overline{\mathrm{Ric}}(\nu ,\nu ))\varphi )dA \\&\quad +\int \nolimits _{\partial M}\varphi (\nabla _{\mu }\varphi -q\varphi )ds+\cos \theta \,\frac{d}{dt}\Big |_{t=0}\left( \int \nolimits _{\partial M}\langle Y, {\bar{\nu }}\rangle ds_{t}\right) \\&=-\int \nolimits _{M}\varphi (\Delta \varphi +(|h|^{2}+\overline{\mathrm{Ric}}(\nu ,\nu ))\varphi )dA+\int \nolimits _{\partial M}\varphi (\nabla _{\mu }\varphi -q\varphi )ds \end{aligned}$$

where in the last equality we have used the wetting-area-preserving condition

$$\begin{aligned} A_W'(0)=\frac{d}{dt}\Big |_{t=0}\left( \int \nolimits _{\partial M}\langle Y, {\bar{\nu }}\rangle ds_{t}\right) =0 \end{aligned}$$

and the expression (2.8) for q. The proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Xia, C. Stability for a Second Type Partitioning Problem. J Geom Anal 31, 2890–2923 (2021). https://doi.org/10.1007/s12220-020-00378-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00378-2

Keywords

Mathematics Subject Classification

Navigation