Skip to main content
Log in

On the Phase Connectedness of the Volume-Constrained Area Minimizing Partitioning Problem

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the stability of partitions in convex domains involving simultaneous coexistence of three phases, viz. triple junctions. We present a careful derivation of the formula for the second variation of area, written in a suitable form with particular attention to boundary and spine terms, and prove, in contrast to the two-phase case, the existence of stable partitions involving a disconnected phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Plateau, J.A.F.: Statique Expérimentale Théorique des Liquides Soumis aux Seules Forces Moléculaire. Gauthier-Villars, Paris (1863)

    Google Scholar 

  2. Nitsche, J.C.C.: Stationary partitioning of convex bodies. Arch. Ration. Mech. An. 89(1), 1–19 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Nitsche, J.C.C.: Corrigendum to: stationary partitioning of convex bodies. Arch. Ration. Mech. Anal. 95(4), 389 (1986)

    Article  Google Scholar 

  4. Almgren Jr., F.J.: Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Bull. Am. Math. Soc. 81, 151–154 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. White, B.: Existence of least-energy configurations of immiscible fluids. J. Geom. Anal. 6(1), 151–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fleming, W.: Flat chains over a coefficient group. Trans. Am. Math. Soc. 121, 160–186 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  7. Taylor, J.E.: The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. Ann. Math. 103, 489–539 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Taylor, J.E.: The structure of singularities in area-related variational problems with constraints. Bull. Am. Math. Soc. 81, 1093–1095 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kinderlehrer, D., Nirenberg, L., Spruck, J.: Regularity in elliptic free boundary problems. J. Anal. Math. 34, 86–119 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brakke, K.A.: The motion of a surface by its mean curvature. Mathematical Notes, vol. 20. Princeton University Press, Princeton, NJ (1978)

  11. Huisken, G.: The volume preserving mean curvature flow. J. Reine Angew. Math. 382, 34–48 (1987)

    MathSciNet  MATH  Google Scholar 

  12. Hartley, D.: Motion by volume preserving mean curvature flow near cylinders. Commun. Anal. Geom. 21(5), 873–889 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sternberg, P., Zumbrun, K.: A Poincaré inequality with applications to volume-constrained area-minimizing surfaces. J. Reine Angew. Math. 503, 63–85 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Alikakos, N., Faliagas, A.: Stability criteria for multiphase partitioning problems with volume constraints. Discrete Contin. Dyn. Syst. 37(2), 663–683 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. Applied Mathematical Sciences, 2nd edn, vol. 75. Springer, New York (1988)

  16. Giaquinta, M., Hildebrandt, S.: Calculus of Variations. I. The Lagrangian Formalism, vol. 310. Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin (1996)

  17. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University, Canberra, (1983)

  18. Bellettini, G.: Lecture notes on mean curvature flow, barriers and singular perturbations. Edizioni della Normale, Pisa (2013)

    Book  MATH  Google Scholar 

  19. Spivak, M.: A comprehensive introduction to differential geometry, vol. II, 2nd edn. III. Publish or Perish, Houston (1979)

  20. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics, 2nd edn, vol. 140. Elsevier, Amsterdam (2006)

  21. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  22. Struwe, M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 4th edn. Springer, New York (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Faliagas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faliagas, A.C. On the Phase Connectedness of the Volume-Constrained Area Minimizing Partitioning Problem. J Geom Anal 28, 3373–3423 (2018). https://doi.org/10.1007/s12220-017-9963-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9963-4

Keywords

Mathematics Subject Classification

Navigation