Skip to main content
Log in

Sub-Riemannian Geometry and Geodesics in Banach Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we define and study sub-Riemannian structures on Banach manifolds. We obtain extensions of the Chow–Rashevsky Theorem for exact controllability, and give conditions for the existence of a Hamiltonian geodesic flow despite the lack of a Pontryagin Maximum Principle in the infinite- dimensional setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here, we somewhat stretch the definition of distance to allow infinite values for the distance between points that cannot be horizontally connected.

  2. Each \({\tilde{q}}(s,\cdot )\) is the projection to M of a curve \(({\tilde{q}}(s,\cdot ),{\tilde{p}}(s,\cdot ))\) that follows the Hamiltonian flow with initial condition \(({\tilde{q}}_0+s\delta q_0,n({\tilde{q}}_0+s\delta q_0) p_0)\). Then \({\tilde{u}}(s,t)=u({\tilde{q}}(s,t),{\tilde{p}}(s,t))\), which is \(\mathcal {C}^2\) in (ts). Moreover, \(g_{{\tilde{q}}(s,t)}({\tilde{u}}(s,t),{\tilde{u}}(s,t))=2h({\tilde{q}}(s,t),{\tilde{p}}(s,t))=2h(q_0,p_0)=c^2\).

References

  1. Bellaïche, A., Risler, J.-J. (eds.): Sub-Riemannian Geometry. Progress in Mathematics, vol. 144. Birkhäuser, Basel (1996)

    MATH  Google Scholar 

  2. Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications. Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence, RI (2002)

    MATH  Google Scholar 

  3. Sussmann, H.J.: Orbits of families of vector fields and integrability of distributions. Trans. Am. Math. Soc. 180, 171–188 (1973)

    Article  MathSciNet  Google Scholar 

  4. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. Translated by D. E. Brown. A Pergamon Press Book. The Macmillan Co., New York (1964)

  5. Arguillère, S., Trélat, E.: Sub-Riemannian structures on groups of diffeomorphisms. J. Inst. Math. Jussieu 16, 745–785 (2015)

    Article  MathSciNet  Google Scholar 

  6. Arguillère, S., Trélat, E., Trouvé, A., Younes, L.: Shape deformation analysis from the optimal control viewpoint. J. Math. Pures Appl. 104(1), 139–178 (2015)

    Article  MathSciNet  Google Scholar 

  7. Li, X.J., Yong, J.M.: Optimal Control Theory for Infinite-Dimensional Systems Systems & Control: Foundations & Applications. Boston Inc, Boston, MA (1995)

    Google Scholar 

  8. Grong, E., Markina, I., Vasil’ev, A.: Sub-riemannian geometry on infinite-dimensional manifolds. J. Geom. Anal. 25(4), 2474–2515 (2014)

    Article  MathSciNet  Google Scholar 

  9. Ralph, A., Marsden, J.E., Tudor, R.: Manifolds, Tensor Analysis, and Applications, volume 75 of Classics in Applied Mathematics. Springer, New York (1983)

    Google Scholar 

  10. Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1), 74–113 (2007)

    Article  MathSciNet  Google Scholar 

  11. Agrachev, A.A., Boscain, U., Charlot, G., Ghezzi, R., Sigalotti, M.: Two-dimensional almost-Riemannian structures with tangency points. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(3), 793–807 (2010)

    Article  MathSciNet  Google Scholar 

  12. Dubnikov, P.I., Samborskii, S.N.: Controllability criterion for systems in a Banach space (generalization of chow’s theorem). Ukrainian Math. J. 32(5), 429–432 (1980)

    Article  MathSciNet  Google Scholar 

  13. Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence, RI (1997)

    Book  Google Scholar 

  14. Mackenzie, K.C.H.: General Theory of Lie Groupoids and Lie Algebroids. London Mathematical Society Lecture Note Series, vol. 213. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  15. Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 2(92), 102–163 (1970)

    Article  MathSciNet  Google Scholar 

  16. Omori, H.: Infinite Dimensional Lie Transformation Groups. Lecture Notes in Mathematics, vol. 427. Springer, Berlin (1974)

    Book  Google Scholar 

  17. Schmid, R.: Infinite dimensional Lie groups with applications to mathematical physics. J. Geom. Symm. Phys. 1, 54–120 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Arguillère, S., Miller, M., Younès, L.: LDDMM surface registration with atrophy constraints. (2015)

  19. Arguillère, S., Trélat, E., Trouvé, A., Younes, L.: Multiple shape registration using constrained optimal control. SIAM J. Image. Sci. 9, 37 (2015). https://doi.org/10.1137/15M1006726

    Article  MATH  Google Scholar 

  20. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society (SIAM), Providence (2001)

    MATH  Google Scholar 

  21. Grossman, N.: Hilbert manifolds without epiconjugate points. Proc. Am. Math. Soc. 16, 1365–1371 (1965)

    Article  MathSciNet  Google Scholar 

  22. Trélat, E.: Contrôle Optimal: Théorie et Applications. Mathématiques Concrètes, Vuibert (2008)

    MATH  Google Scholar 

  23. Agrachev, A.A., Sachkov, Y.L.: Control theory from the geometric viewpoint, volume 87 of Encyclopaedia of Mathematical Sciences, Control Theory and Optimization, II. Springer, Berlin (2004)

    Google Scholar 

  24. Salehani, M.Khajeh, Markina, I.: Controllability on infinite-dimensional manifolds: A chow–rashevsky theorem. Acta Appl. Math. 134(1), 229–246 (2014)

    Article  MathSciNet  Google Scholar 

  25. Lathuille, A., Pelletier, F.: On sussmann theorem for orbits of sets of vector fields on banach manifolds. Bulletin des Sciences Mathématiques 136(5), 579–616 (2012)

    Article  MathSciNet  Google Scholar 

  26. Agrachev, A.A., Caponigro, M.: Controllability on the group of diffeomorphisms. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(6), 2503–2509 (2009)

    Article  MathSciNet  Google Scholar 

  27. Arguillère, S.: The general setting for shape analysis. (2015)

  28. Eichhorn, J., Schmid, R.: Form preserving diffeomorphisms on open manifolds. Ann. Glob. Anal. Geom. 14(2), 147–176 (1996)

    Article  MathSciNet  Google Scholar 

  29. Rifford, L.: Sub-Riemannian Geometry and Optimal Transport. SpringerBriefs in Mathematics. Springer International Publishing, New York (2014)

    Book  Google Scholar 

  30. Bauer, M., Bruveris, M., Harms, P., Michor, P.W.: Geodesic distance for right invariant sobolev metrics of fractional order on the diffeomorphism group. Ann. Glob. Anal. Geom. 44(1), 5–21 (2013)

    Article  MathSciNet  Google Scholar 

  31. Bauer, M., Harms, P., Michor, P.W.: Sobolev metrics on shape space of surfaces. J. Geom. Mech. 3(4), 389–438 (2011)

    Article  MathSciNet  Google Scholar 

  32. Bauer, M., Harms, P., Michor, P.W.: Sobolev metrics on shape space, II: weighted Sobolev metrics and almost local metrics. J. Geom. Mech. 4(4), 365–383 (2012)

    Article  MathSciNet  Google Scholar 

  33. Misiołek, G., Preston, S.C.: Fredholm properties of Riemannian exponential maps on diffeomorphism groups. Invent. Math. 179(1), 191–227 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Arguillère.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arguillère, S. Sub-Riemannian Geometry and Geodesics in Banach Manifolds. J Geom Anal 30, 2897–2938 (2020). https://doi.org/10.1007/s12220-019-00184-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00184-5

Keywords

Mathematics Subject Classification

Navigation