Skip to main content
Log in

Asymptotic Convergence for a Class of Fully Nonlinear Curvature Flows

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study a class of contracting flows of closed, convex hypersurfaces in the Euclidean space \({\mathbb {R}}^{n+1}\) with speed \(r^{\alpha } \sigma _k\), where \(\sigma _k\) is the k-th elementary symmetric polynomial of the principal curvatures, \(\alpha \in {\mathbb {R}}^1\), and r is the distance from the hypersurface to the origin. If \(\alpha \ge k+1\), we prove that the flow exists for all time, preserves the convexity and converges smoothly after normalisation to a sphere centred at the origin. If \(\alpha <k+1\), a counterexample is given for the above convergence. In the case \(k=1\) and \(\alpha \ge 2\), we also prove that the flow converges to a round point if the initial hypersurface is weakly mean-convex and star-shaped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandroni, R., Sinestrari, C.: Evolution of hypersurfaces by powers of the scalar curvature. Ann. Sc. Norm. Super. Pisa Cl. Sci. 9(3), 541–571 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Andrews, B.: Contraction of convex hypersurfaces in Euclidean space. Calc. Var. PDEs 2(2), 151–171 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrews, B.: Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138(1), 151–161 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andrews, B.: Motion of hypersurfaces by Gauss curvature. Pac. J. Math. 195(1), 1–34 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andrews, B., McCoy, J.: Convex hypersurfaces with pinched principal curvatures and flow of convex hypersurfaces by high powers of curvature. Trans. Amer. Math. Soc. 364(7), 3427–3447 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andrews, B., Guan, P.F., Ni, L.: Flow by power of the Gauss curvature. Adv. Math. 299, 174–201 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andrews, B; Wei, Y. Volume preserving flow by powers of \(k\)-th mean curvature. To appear in J. Differ. Geom. arXiv:1708.03982

  8. Brendle, S., Choi, K., Daskalopoulos, P.: Asymptotic behavior of flows by powers of the Gauss curvature. Acta Math. 219, 1–16 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bryan, P., Ivaki, M., Scheuer, J.: A unified flow approach to smooth, even \(L_p\)-Minkowski problems. Anal. PDE 12, 259–280 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caffarelli, L., Cabré, X.: Fully nonlinear elliptic equations, p. vi+104. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  11. Cabezas-Rivas, E., Sinestrari, C.: Volume-preserving flow by powers of the mth mean curvature. Calc. Var. PDEs 38(3–4), 441–469 (2010)

    Article  MATH  Google Scholar 

  12. Chou, K.-S.: (Tso, Kaising): Deforming a hypersurface by its Gauss–Kronecker curvature. Commun. Pure Appl. Math. 38(6), 867–882 (1985)

    Article  Google Scholar 

  13. Chow, B.: Deforming convex hypersurfaces by the \(n\)-th root of the Gaussian curvature. J. Differ. Geom. 22(1), 117–138 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chow, B.: Deforming convex hypersurfaces by the square root of the scalar curvature. Invent. Math. 87(1), 63–82 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chow, B., Tsai, D.-H.: Expansion of convex hypersurfaces by nonhomogeneous functions of curvature. Asian J. Math. 1(4), 769–784 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Firey, W.J.: Shapes of worn stones. Mathematika 21, 1–11 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32(1), 299–314 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gerhardt, C.: Non-scale-invariant inverse curvature flows in Euclidean space. Calc. Var. PDEs 49(1–2), 471–489 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, p. xiv+517. Springer, Berlin (2001)

    MATH  Google Scholar 

  20. Guan, P., Li, J.: A mean curvature type flow in space forms. Int. Math. Res. Not. IMRN 13, 4716–4740 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guan, P., Ni, L.: Entropy and a convergence theorem for Gauss curvature flow in high dimensions. J. Eur. Math. Soc. 19(12), 3735–3761 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guan, P., Xia, C.: \(L_p\) Christoffel–Minkowski problem: the case \(1\,<\,p\,<\,k+1\). Calc. Var. PDEs 57(2), 23 (2018)

    Article  MATH  Google Scholar 

  23. Hu, C., Ma, X., Shen, C.: On the Christoffel–Minkowski problem of Firey’s \(p\)-sum. Calc. Var. PDEs 21(2), 137–155 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, Y., Lutwak, E., Yang, D., Zhang, G.: Geometric measures in the dual Brunn–Minkowski theory and their associated Minkowski problems. Acta Math. 216(2), 325–388 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ivaki, M.: Deforming a hypersurface by principal radii of curvature and support function. Calc. Var. PDEs 58(1), 58:1 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Krylov, N.V., Safonov, M.V.: A certain property of solutions of parabolic equations with measurable coefficients. Math. USSR Izv. 16(1), 151–164 (1981)

    Article  MATH  Google Scholar 

  28. Li, Q.-R., Sheng, W.M., Wang, X.-J.: Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems. To appear in J. Eur. Math. Soc. arXiv:1712.07774

  29. Lieberman, G.: Second Order Parabolic Differential Equations, p. xii+439. World Scientific Publishing Co., Singapore (1996)

    Book  MATH  Google Scholar 

  30. Lutwak, E.: The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–50 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of Mathematics and Its Applications, vol. 151. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  32. Schnürer, O.C.: Surfaces contracting with speed \(|A|^2\). J. Differ. Geom. 71(3), 347–363 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schulze, F.: Convexity estimates for flows by powers of the mean curvature. Ann. Sc. Norm. Super. Pisa Cl. Sci 5(2), 261–277 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Tian, G., Wang, X.-J.: A priori estimates for fully nonlinear parabolic equations. Int. Math. Res. Not. IMRN 17, 3857–3877 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Urbas, J.: On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures. Math. Z. 205(3), 355–372 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Urbas, J.: An expansion of convex hypersurfaces. J. Differ. Geom. 33(1), 91–125 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Funding provided by Australian Research Council (Grant No. FL 130100118) and NSF in China (Grant Nos. 11131007 and 11571304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Rui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, QR., Sheng, W. & Wang, XJ. Asymptotic Convergence for a Class of Fully Nonlinear Curvature Flows. J Geom Anal 30, 834–860 (2020). https://doi.org/10.1007/s12220-019-00169-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00169-4

Keywords

Mathematics Subject Classification

Navigation