Skip to main content
Log in

A Curvature Flow Approach to \(L^p\) Christoffel-Minkowski Problem for \(1<p<k+1\)

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study an anisotropic expanding flow of smooth, closed, uniformly convex hypersurfaces in \(\mathbb {R}^{n+1}\) with speed \(\psi \sigma _k^{\alpha }(\lambda )\), where \(\alpha >\frac{1}{k}\) is a constant, \(\sigma _k(\lambda )\) is the k-th elementary symmetric polynomial of the principal radii of curvature and \(\psi \) is a preassigned positive smooth function defined on \(\mathbb {S}^n\). We prove that under some assumptions of \(\psi \), the solution to the flow after normalisation exists for all time and converges smoothly to a solution of the well-known \(L^p\) Christoffel-Minkowski problem \(u^{1-p}(x) \sigma _k (\nabla ^2u+uI)=c\psi (x)\) for \(1<p<k+1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availibility

This article has no associated data.

References

  1. Alexandroff, A.: Über die Oberflächenfunktion eines konvexen Körpers. (Bemerkung zur Arbeit Zur Theorie der gemischten Volumina von konvexen Körpern”), Rec. Math. N.S. [Mat. Sbornik], 6(48), 167–174 (1939)

  2. Alexandroff, A., Smoothness of the convex surface of bounded Gaussian curvature. In: C. R. (Doklady) Acad. Sci. URSS (N.S.), 36, 195–199 (1942)

  3. Aleksandrov, A.D.: Dirichlet’s problem for the equation \({\rm Det}\,||z_{ij}|| =\varphi (z_{1},\cdots ,z_{n},z, x_{1},\cdots , x_{n})\). I, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astr., 13, 5–24 (1958)

  4. Andrews, Ben: Evolving convex curves. Calc. Var. Partial Differ. Equ. 7(4), 315–371 (1998)

    Article  MathSciNet  Google Scholar 

  5. Andrews, Ben: Pinching estimates and motion of hypersurfaces by curvature functions. J. Reine Angew. Math. 608, 17–33 (2007)

    MathSciNet  Google Scholar 

  6. Bryan, P., Ivaki, M., Scheuer, J.: Christoffel-Minkowski flows. Trans. Am. Math. Soc. 376(4), 2373–2393 (2023)

    MathSciNet  Google Scholar 

  7. Calabi, E.: Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. Michigan Math. J. 5, 105–126 (1958)

    Article  MathSciNet  Google Scholar 

  8. Cheng, Shiu Yuen, Yau, Shing Tung: On the regularity of the solution of the \(n\)-dimensional Minkowski problem. Comm. Pure Appl. Math. 29(5), 495–516 (1976)

    Article  MathSciNet  Google Scholar 

  9. Chou, K.S., Wang, X.J.: The \(L_p\)-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205(1), 33–83 (2006)

    Article  MathSciNet  Google Scholar 

  10. Chow, B., Gulliver, R.: Aleksandrov reflection and nonlinear evolution equations. I. The \(n\)-sphere and \(n\)-ball. Calc. Var. Partial Differ. Equ. 4(3), 249–264 (1996)

    Article  MathSciNet  Google Scholar 

  11. Ding, S., Li, G.: A class of inverse curvature flows and \(L^p\) dual Christoffel-Minkowski problem. Trans. Amer. Math. Soc. 376(1), 697–752 (2023)

    MathSciNet  Google Scholar 

  12. Firey, W.J.: \(p\)-means of convex bodies. Math. Scand. 10, 17–24 (1962)

    Article  MathSciNet  Google Scholar 

  13. Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32(1), 299–314 (1990)

    Article  MathSciNet  Google Scholar 

  14. Gerhardt, Claus: Non-scale-invariant inverse curvature flows in Euclidean space. Calc. Var. Partial Differ. Equ. 49(1–2), 471–489 (2014)

    Article  MathSciNet  Google Scholar 

  15. Guan, P., Ma, X.N.: The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation. Invent. Math. 151(3), 553–577 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  16. Guan, P., Ma, X.N., Trudinger, N., Zhu, X.: A form of Alexandrov-Fenchel inequality. Pure Appl. Math. Q. 6(4), 999–1012 (2010)

    Article  MathSciNet  Google Scholar 

  17. Guan, P., Xia, C.: \(L^p\) Christoffel-Minkowski problem: the case \(1<p<k+1\). Calc. Var. Partial Differ. Equ. 57(2), 23 (2018)

    Article  Google Scholar 

  18. Heinz, Erhard: On elliptic Monge-Ampère equations and Weyl’s embedding problem. J. Analyse Math. 7, 1–52 (1959)

    Article  MathSciNet  Google Scholar 

  19. Hu, C., Ma, X.N., Shen, C.: On the Christoffel-Minkowski problem of Firey’s \(p\)-sum. Calc. Var. Partial Differ. Equ. 21(2), 137–155 (2004)

    Article  MathSciNet  Google Scholar 

  20. Ivaki, Mohammad N.: Deforming a hypersurface by principal radii of curvature and support function. Calc. Var. Partial Differ. Equ. 58(1), 18 (2019)

    Article  MathSciNet  Google Scholar 

  21. Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations. Izv. Akad. Nauk SSSR Ser. Mat. 46(3), 487–523 (1982)

    ADS  MathSciNet  Google Scholar 

  22. Lewy, H.: On differential geometry in the large. I. Minkowski’s problem. Trans. Amer. Math. Soc. 43(2), 258–270 (1938)

    MathSciNet  Google Scholar 

  23. Li, Q.R., Sheng, W., Wang, X.J.: Asymptotic convergence for a class of fully nonlinear curvature flows. J. Geom. Anal. 30(1), 834–860 (2020)

    Article  MathSciNet  Google Scholar 

  24. Lieberman, G.M.: Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, xii+439 (1996)

  25. Lu, J., Wang, X.J.: Rotationally symmetric solutions to the \(L_p\)-Minkowski problem. J. Differ. Equ. 254(3), 983–1005 (2013)

    Article  ADS  Google Scholar 

  26. Lutwak, E.: The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38(1), 131–150 (1993)

    Article  MathSciNet  Google Scholar 

  27. Lutwak, E., Oliker, V.: On the regularity of solutions to a generalization of the Minkowski problem. J. Differ. Geom. 41(1), 227–246 (1995)

    Article  MathSciNet  Google Scholar 

  28. Minkowski, H.: Volumen und Oberfläche. Math. Ann. 57(4), 447–495 (1903)

    Article  MathSciNet  Google Scholar 

  29. Nirenberg, Louis: The Weyl and Minkowski problems in differential geometry in the large. Comm. Pure Appl. Math. 6, 337–394 (1953)

    Article  MathSciNet  Google Scholar 

  30. Pogorelov, A.V.: Regularity of a convex surface with given Gaussian curvature. Mat. Sbornik N.S. 31(73), 88–103 (1952)

    MathSciNet  Google Scholar 

  31. Pogorelov, A.V.: A regular solution of the \(n\)-dimensional Minkowski problem. Soviet Math. Dokl. 12, 1192–1196 (1971)

    MathSciNet  Google Scholar 

  32. Sheng, W., Yi, C.: A class of anisotropic expanding curvature flows. Discrete Contin. Dyn. Syst. 40(4), 2017–2035 (2020)

    Article  MathSciNet  Google Scholar 

  33. Urbas, J.I.E.: An expansion of convex hypersurfaces. J. Differ. Geom. 33(1), 91–125 (1991)

    Article  MathSciNet  Google Scholar 

  34. Wang, X.J.: The \(k\)-Hessian equation, Geometric analysis and PDEs, Lecture Notes in Math. Springer. Dordrecht 2009, 177–252 (1977)

  35. Zhu, G.: The \(L_p\) Minkowski problem for polytopes for \(0<p<1\). J. Funct. Anal. 269(4), 1070–1094 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor Haizhong Li for suggesting the problem and many valuable comments. The author also thanks Professor Yuguang Shi for his constant encouragement and support.

Funding

The author was supported by the National Key R &D Program of China 2020YFA0712800 and the China Postdoctoral Science Foundation No. 2023M740108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijia Zhang.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R. A Curvature Flow Approach to \(L^p\) Christoffel-Minkowski Problem for \(1<p<k+1\). Results Math 79, 53 (2024). https://doi.org/10.1007/s00025-023-02069-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-02069-0

Keywords

Mathematics Subject Classification

Navigation