Skip to main content
Log in

The LIR Method. \(L^{r}\) Solutions of Elliptic Equation in a Complete Riemannian Manifold

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We introduce the Local Increasing Regularity Method (LIRM) which allows us to get from local a priori estimates, on solutions u of a linear equation \(\displaystyle Du=\omega ,\)global ones. As an application we shall prove that if D is an elliptic linear differential operator of order m with \({\mathcal {C}}^{\infty }\) coefficients operating on the sections of a complex vector bundle \(\displaystyle G:=(H,\pi ,M)\) over a compact Riemannian manifold M without boundary and \(\omega \in L^{r}_{G}(M)\cap (\mathrm {k}\mathrm {e}\mathrm {r}D^{*})^{\perp },\) then there is a \(u\in W^{m,r}_{G}(M)\) such that \(Du=\omega \) on M. Next we investigate the case of a compact manifold with boundary by using the “Riemannian double manifold.” In the last sections we study the more delicate case of a complete but non-compact Riemannian manifold by the use of adapted weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Maximum theorems for solutions of higher order elliptic equations. Bull. Am. Math. Soc. 66, 77–80 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amar, E.: The raising steps method: application to the \(\bar{\partial }\) equation in Stein manifolds. J. Geom. Anal. 26(2), 898–913 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amar, E.: The raising steps method. applications to the \({L^r}\) Hodge theory in a compact riemannian manifold. Arxiv (2017). arXiv:1506.00418v2

  5. Amar, Eric: On the \({L}^{r}\) Hodge theory in complete non compact riemannian manifolds. Math. Z. 287(3), 751–795 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aronszajn, N., Krzywicki, A., Szarski, J.: A unique continuation theorem for exterior differential forms on riemannian manifolds. Ark. Mat. 4, 417–453 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berger, M., Gauduchon, P., Mazet, E.: Le Spectre d’une Variété Riemannienne. Lecture Notes in Mathematics, vol. 194. Springer, New York (1971)

    Book  MATH  Google Scholar 

  8. Bergh, J., Löfström, J.: Interpolation Spaces. Grundlehren der Mathematischen Wissenchaften, vol. 223. Springer, New York (1976)

    Book  MATH  Google Scholar 

  9. Courrége, P.: Formules de green. Sémin. Brelot-Choquet-Deny. Théor. Potentiel 10(1), 1–30 (1965)

    Google Scholar 

  10. Donaldson, S.: Lecture Notes for TCC Course “Geometric Analysis”. In: Donaldson 2008 Lecture NF (2008)

  11. Dong, H., Kim, D.: On the \({L}_p\)-sovability of higher order parabolic and elliptic systems with BMO coefficients. Arch. Ration. Mech. Anal. 199, 889–941 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duff, G.F.D.: Differential forms in manifolds with boundary. Ann. Math. 56, 115–127 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  13. Evans, L.C., Gariepy, R.E.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  14. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations. Grundlheren der Mathematischen Wissenschaften. Springer, New York (1998)

    MATH  Google Scholar 

  15. Gromov, M.: Kähler hyperbolicity and \({L^2}\)-Hodge theory. J. Differ. Geom. 33, 253–320 (1991)

    Article  MathSciNet  Google Scholar 

  16. Guneysu, B., Pigola, S.: Calderon–Zygmund inequality and Sobolev spaces on noncompact riemannian manifolds. Adv. Math. 281, 353–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hebey, E.: Sobolev Spaces on Riemannian Manifolds. Lecture Notes in Mathematics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  18. Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Grundlehren der Mathematischen Wissenschften, vol. 274. Springer, New York (1994)

    Google Scholar 

  19. Kenig, C.E.: Carleman estimates, uniform sobolev inequalities for second-order differential operators, and unique continuation theorems, pp. 948–960. In: Proceedings of the International Congress of Mathematicians, Berkeley, CA (1986)

  20. Kodaira, K.: Harmonic fields in riemannian manifolds (generalized potential theory). Ann. Math. 50, 587–665 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, X.-D.: On the strong \({L}^p\)-Hodge decomposition over complete riemannian manifolds. J. Funct. Anal. 257, 3617–3646 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Die Grundlehren der Mathematischen Wissenschaften, vol. 130. Springer, Berlin (1966)

    MATH  Google Scholar 

  23. Munkres, J.: Elementary Differential Topology. Annals of Mathematics Studies, vol. 54. Princeton University Press, Princeton (1961)

    Google Scholar 

  24. Schwarz, G.: Hodge Decomposition : A Method for Solving Boundary Values Problems. Lecture Notes in Mathematics, vol. 1607. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  25. Scott, C.: \({L}^p\) theory of differential forms on manifolds. Trans. Am. Math. Soc. 347(6), 2075–2096 (1995)

    MATH  Google Scholar 

  26. Serre, J.P.: Un théorème de dualité. Comment. Math. Helv. 29, 9–26 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  27. Varopoulos, N.: Small time gaussian estimates of heat diffusion kernels. Bull. Sci. Math. 113, 253–277 (1989)

    MathSciNet  MATH  Google Scholar 

  28. Voisin, C.: Théorie de Hodge et géométrie algébrique complexe., volume 10 of Cours spécialisé. S.M.F. (2002)

  29. Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Graduate Texts in Mathematics, vol. 94. Springer, New York (1983)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Amar.

Appendix

Appendix

We shall use the following lemma.

Lemma 7.1

Let (Mg) be a Riemannian manifold; then with \(\displaystyle R(x)=R_{\epsilon }(x)=\) the \(\epsilon \) admissible radius at \(\displaystyle x\in M\) and \(\displaystyle d(x,y)\) the Riemannian distance on \(\displaystyle (M,g)\) we get

$$\begin{aligned} \displaystyle d(x,y)\le \frac{1}{4}(R(x)+R(y))\Rightarrow R(x)\le 4R(y). \end{aligned}$$

Proof

Let \(\displaystyle x,y\in M::d(x,y)\le \frac{1}{4}(R(x)+R(y))\) and suppose for instance that \(\displaystyle R(x)\ge R(y).\) Then \(\displaystyle y\in B(x,R(x)/2)\) and hence we have \(\displaystyle B(y,R(x)/4)\subset B(x,\frac{3}{4}R(x)).\) But by the definition of \(\displaystyle R(x),\) the ball \(\displaystyle B(x,\frac{3}{4}R(x))\) is admissible and this implies that the ball \(\displaystyle B(y,R(x)/4)\) is also admissible for exactly the same constants and the same chart; this implies that \(\displaystyle R(y)\ge R(x)/4.\)\(\square \)

1.1 Vitali Covering 

Lemma 7.2

Let \({\mathcal {F}}\) be a collection of balls \(\lbrace B(x,r(x))\rbrace \) in a metric space, with \(\forall B(x,r(x))\in {\mathcal {F}},\ 0<r(x)\le R.\) There exists a disjoint subcollection \({\mathcal {G}}\) of \({\mathcal {F}}\) with the following property: every ball B in \({\mathcal {F}}\) intersects a ball C in \({\mathcal {G}}\) and \(\displaystyle B\subset 5C.\)

This is a well-known lemma, see for instance  [13], Section 1.5.1.

Fix \(\epsilon >0\) and let \(\displaystyle \forall x\in M,\ r(x):=R_{\epsilon }(x)/120,\ \)where \(\displaystyle R_{\epsilon }(x)\) is the admissible radius at \(\displaystyle x,\) and we built a Vitali covering with the collection \({\mathcal {F}}:=\lbrace B(x,r(x))\rbrace _{x\in M}.\) The previous lemma gives a disjoint subcollection \({\mathcal {G}}\) such that every ball B in \({\mathcal {F}}\) intersects a ball C in \({\mathcal {G}}\) and we have \(\displaystyle B\subset 5C.\) We set \({\mathcal {G}}^{\prime }:=\lbrace x_{j}\in M::B(x_{j},r(x_{j}))\in {\mathcal {G}}\rbrace \) and \({\mathcal {C}}_{\epsilon }:=\lbrace B(x,5r(x)),\ x\in {\mathcal {G}}^{\prime }\rbrace .\) We shall call \({\mathcal {C}}_{\epsilon }\) the \(m,\epsilon \)admissible covering of \(\displaystyle (M,g).\)

We shall fix \(m\ge 2\) and we omit it in order to ease the notation.

Recall that \(\epsilon <1,\) then we have:

Proposition 7.3

Let (Mg) be a Riemannian manifold. The overlap of the \(\epsilon \) admissible covering \({\mathcal {C}}_{\epsilon }\) is less than \(\displaystyle T=\frac{(1+\epsilon )^{n/2}}{(1-\epsilon )^{n/2}}(120)^{n},\) i.e.,

$$\begin{aligned} \forall x\in M,\ x\in B(y,5r(y)) \end{aligned}$$

for at most T such balls, where \(B(y,r(y))\in {\mathcal {G}}.\)

So we have

$$\begin{aligned} \forall f\in L^{1}(M),\ \sum _{j\in {\mathbb {N}}}{\int _{B_{j}}{\left| {f(x)}\right| dv_{g}(x)}}\le T{\left\| {f}\right\| }_{L^{1}(M)}. \end{aligned}$$

Proof

Let \(B_{j}:=B(x_{j},r(x_{j}))\in {\mathcal {G}}\) and suppose that \(\displaystyle x\in \bigcap _{j=1}^{k}{B(x_{j},5r(x_{j}))}.\) Then we have

$$\begin{aligned} \displaystyle \forall j=1,\ldots ,k,\ d(x,x_{j})\le 5r(x_{j}) \end{aligned}$$

and hence

$$\begin{aligned} \begin{aligned} \displaystyle d(x_{j},x_{l})&\le d(x_{j},x)+d(x,x_{l})\le 5(r(x_{j})+r(x_{l}))\le \frac{1}{4}(R(x_{j})+R(x_{l}))\\&\Rightarrow R(x_{j})\le 4R(x_{l}) \end{aligned} \end{aligned}$$

and by exchanging \(\displaystyle x_{j}\) and \(\displaystyle x_{l},\ R(x_{l})\le 4R(x_{j}).\)

So we get

$$\begin{aligned} \displaystyle \forall j,l=1,\ldots ,k,\ r(x_{j})\le 4r(x_{l}),\ r(x_{l})\le 4r(x_{j}). \end{aligned}$$

Now the ball \(\displaystyle B(x_{j},5r(x_{j})+5r(x_{l}))\) contains \(\displaystyle x_{l}\) and hence the ball \(\displaystyle B(x_{j},5r(x_{j})+6r(x_{l}))\) contains the ball \(\displaystyle B(x_{l},r(x_{l})).\) But, because \(\displaystyle r(x_{l})\le 4r(x_{j}),\) we get

$$\begin{aligned} \displaystyle B(x_{j},5r(x_{j})+6{\times }4r(x_{j}))=B(x_{j},r(x_{j})(5+24))\supset B(x_{l},r(x_{l})). \end{aligned}$$

The balls in \({\mathcal {G}}\) being disjoint, we get, setting \(\displaystyle B_{l}:=B(x_{l},\ r(x_{l})),\)

$$\begin{aligned} \displaystyle \ \sum _{j=1}^{k}{\mathrm {V}\mathrm {o}\mathrm {l}(B_{l})}\le \mathrm {V}\mathrm {o}\mathrm {l}(B(x_{j},29r(x_{j}))). \end{aligned}$$

The Lebesgue measure read in the chart \(\varphi \) and the canonical measure \(dv_{g}\) on \(\displaystyle B(x,R_{\epsilon }(x))\) are equivalent; precisely because of condition (1) in the admissible ball definition, we get that

$$\begin{aligned} \displaystyle (1-\epsilon )^{n}\le \left| {\mathrm {d}\mathrm {e}\mathrm {t}g}\right| \le (1+\epsilon )^{n}, \end{aligned}$$

and the measure \(dv_{g}\) read in the chart \(\varphi \) is \(dv_{g}={\sqrt{\left| {\mathrm {d}\mathrm {e}\mathrm {t}g_{ij}}\right| }}d\xi ,\) where \(\displaystyle d\xi \) is the Lebesgue measure in \({\mathbb {R}}^{n}.\) In particular,

$$\begin{aligned} \displaystyle \forall x\in M,\ \mathrm {V}\mathrm {o}\mathrm {l}(B(x,\ R_{\epsilon }(x)))\le (1+\epsilon )^{n/2}\nu _{n}R^{n}, \end{aligned}$$

where \(\nu _{n}\) is the euclidean volume of the unit ball in \({\mathbb {R}}^{n}.\)

Now because \(\displaystyle R(x_{j})\) is the admissible radius and \(\displaystyle 4{\times }29r(x_{j})<R(x_{j}),\) we have

$$\begin{aligned} \displaystyle \mathrm {V}\mathrm {o}\mathrm {l}(B(x_{j},29r(x_{j})))\le 29^{n}(1+\epsilon )^{n/2}v_{n}r(x_{j})^{n}. \end{aligned}$$

On the other hand we also have

$$\begin{aligned} \displaystyle \mathrm {V}\mathrm {o}\mathrm {l}(B_{l})\ge v_{n}(1-\epsilon )^{n/2}r(x_{l})^{n}\ge v_{n}(1-\epsilon )^{n/2}4^{-n}r(x_{j})^{n}, \end{aligned}$$

and hence

$$\begin{aligned} \displaystyle \ \sum _{j=1}^{k}{(1-\epsilon )^{n/2}4^{-n}r(x_{j})^{n}}\le 29^{n}(1+\epsilon )^{n/2}r(x_{j})^{n}, \end{aligned}$$

so finally

$$\begin{aligned} \displaystyle k\le (29{\times }4)^{n}\frac{(1+\epsilon )^{n/2}}{(1-\epsilon )^{n/2}}, \end{aligned}$$

which means that \(\displaystyle T\le \frac{(1+\epsilon )^{n/2}}{(1-\epsilon )^{n/2}}(120)^{n}.\)

Saying that any \(\displaystyle x\in M\) belongs to at most T balls of the covering \(\displaystyle \lbrace B_{j}\rbrace \) means that \({\sum _{j\in {\mathbb {N}}}{{\mathbb {1}}_{B_{j}}(x)}\le T}\), and this implies easily that

$$\begin{aligned} \displaystyle \forall f\in L^{1}(M),\ \sum _{j\in {\mathbb {N}}}{\int _{B_{j}}{\left| {f(x)}\right| dv_{g}(x)}}\le T{\left\| {f}\right\| }_{L^{1}(M)}. \end{aligned}$$

\(\square \)

1.2 Sobolev Spaces

We have to define the Sobolev spaces in our setting, following Hebey [17], p. 10.

First define the covariant derivatives by \(\displaystyle (\nabla u)_{j}:=\partial _{j}u\) in local coordinates, while the components of \(\nabla ^{2}u\) are given by

$$\begin{aligned} (\nabla ^{2}u)_{ij}=\partial _{ij}u-\Gamma ^{k}_{ij}\partial _{k}u, \end{aligned}$$
(7.1)

with the convention that we sum over repeated index. The Christoffel \(\displaystyle \Gamma ^{k}_{ij}\) verify [7]:

$$\begin{aligned} \Gamma ^{k}_{ij}=\frac{1}{2}g^{il}\left( \frac{\partial g_{kl}}{\partial x^{j}}+\frac{\partial g_{lj}}{\partial x^{k}}-\frac{\partial g_{jk}}{\partial x^{l}}\right) . \end{aligned}$$
(7.2)

If \(\displaystyle k\in {\mathbb {N}}\) and \(r\ge 1\) are given, we denote by \({\mathcal {C}}^{r}_{k}(M)\) the space of smooth functions \(u\in {\mathcal {C}}^{\infty }(M)\) such that \(\displaystyle \ \left| {\nabla ^{j}u}\right| \in L^{r}(M)\) for \(\displaystyle j=0,\ldots ,k.\) Hence

$$\begin{aligned} \displaystyle {\mathcal {C}}^{r}_{k}(M):=\left\{ u\in {\mathcal {C}}^{\infty }(M),\ \forall j=0,\ldots ,k,\ \int _{M}{\left| {\nabla ^{j}u}\right| ^{r}dv_{g}}<\infty \right\} . \end{aligned}$$

Now we have [17].

Definition 7.4

The Sobolev space \(\displaystyle W^{k,r}(M)\) is the completion of \({\mathcal {C}}^{r}_{k}(M)\) with respect to the norm:

$$\begin{aligned} {\left\| {u}\right\| }_{W^{k,r}(M)}=\sum _{j=0}^{k}{{\left( {\int _{M}{\left| {\nabla ^{j}u}\right| ^{r}dv_{g}}}\right) }^{1/r}}. \end{aligned}$$

We extend in a natural way this definition to the case of G-forms.

Let the Sobolev exponents \(\displaystyle S_{k}(r)\) be as in Definition 1.7, then the k th Sobolev embedding is true if we have

$$\begin{aligned} \displaystyle \forall u\in W^{k,r}(M),\ u\in L^{S_{k}(r)}(M). \end{aligned}$$

This is the case in \({\mathbb {R}}^{n},\) or if M is compact, or if M has a Ricci curvature bounded from below and \(\displaystyle \inf \ _{x\in M}v_{g}(B_{x}(1))\ge \delta >0,\) due to Varopoulos [27], see Theorem 3.14, p. 31 in [17].

Lemma 7.5

We have the Sobolev comparison estimates where \(\displaystyle B(x,R)\) is a \(\epsilon \) admissible ball in M and \(\varphi \ ,\ B(x,R)\rightarrow {\mathbb {R}}^{n}\) is the admissible chart relative to \(\displaystyle B(x,R),\)

$$\begin{aligned} \displaystyle \forall u\in W^{m,r}(B(x,R)),\ {\left\| {u}\right\| }_{W^{m,r}(B(x,R))}\le (1+\epsilon C){\left\| {u\circ \varphi ^{-1}}\right\| }_{W^{m,r}(\varphi (B(x,R)))}, \end{aligned}$$

and, with \(\displaystyle B_{e}(0,t)\) the euclidean ball in \({\mathbb {R}}^{n}\) centered at 0 and of radius \(\displaystyle t,\)

$$\begin{aligned} \displaystyle \ {\left\| {v}\right\| }_{W^{m,r}(B_{e}(0,(1-\epsilon )R))}\le (1+2C\epsilon ){\left\| {u}\right\| }_{W^{m,r}(B(x,R))}. \end{aligned}$$

Proof

We have to compare the norms of \(\displaystyle u,\ \nabla u,...,\ \nabla ^{m}u\) with the corresponding ones for \(\displaystyle v:=u\circ \varphi ^{-1}\) in \({\mathbb {R}}^{n}.\)

First we have because \(\displaystyle (1-\epsilon )\delta _{ij}\le g_{ij}\le (1+\epsilon )\delta _{ij}\) in \(\displaystyle B(x,R)\):

$$\begin{aligned} \displaystyle B_{e}(0,(1-\epsilon )R)\subset \varphi (B(x,R))\subset B_{e}(0,(1+\epsilon )R). \end{aligned}$$

Because

$$\begin{aligned} \displaystyle \ \sum _{\left| {\beta }\right| \le m-1}{\sup \ _{i,j=1,\ldots ,n,\ y\in B_{x}(R)}\left| {\partial ^{\beta }g_{ij}(y)}\right| }\le \epsilon \hbox { in } \displaystyle B(x,R), \end{aligned}$$

we have the estimates, with \(\displaystyle \forall y\in B(x,R),\ z:=\varphi (y),\)

$$\begin{aligned} \displaystyle \forall y\in B(x,R),\ \left| {u(y)}\right| =\left| {v(z)}\right| ,\ \ \left| {\nabla u(y)}\right| \le (1+C\epsilon )\left| {\partial v(z)}\right| . \end{aligned}$$

Because of (7.2) and (7.1) we get

$$\begin{aligned} \displaystyle \forall y\in B(x,R),\ \left| {\nabla ^{2}u(y)}\right| \le \left| {\partial ^{2}v(z)}\right| +\epsilon C\left| {\partial v(z)}\right| . \end{aligned}$$

And taking more derivatives, because

$$\begin{aligned} \displaystyle \sum _{\left| {\beta }\right| \le m-1}{\sup \ _{i,j=1,\ldots ,n,\ y\in B_{x}(R)}\left| {\partial ^{\beta }g_{ij}(y)}\right| }\le \epsilon , \end{aligned}$$

we get, for \(2\le k\le m,\)

$$\begin{aligned} \displaystyle \forall y\in B(x,R),\ \left| {\nabla ^{k}u(y)}\right| \le \left| {\partial ^{k}v(z)}\right| +\epsilon (C_{1}\left| {\partial v(z)}\right| +\cdot \cdot \cdot +C_{k-1}\left| {\partial ^{k-1}v(z)}\right| ). \end{aligned}$$

Integrating this we get for \(2\le k\le m,\)

$$\begin{aligned} \displaystyle {\left\| {\nabla ^{k}u}\right\| }_{L^{r}(B(x,R))}\le & {} {\left\| {\left| {\partial ^{k}v}\right| +\epsilon (C_{1}\left| {\partial v(z)}\right| +\cdot \cdot \cdot +C_{k-1}\left| {\partial ^{k-1}v(z)}\right| )}\right\| }_{L^{r}(B_{e}(0,(1+\epsilon )R))}\\ \displaystyle\le & {} {\left\| {\partial ^{k}v}\right\| }_{L^{r}(B_{e}(0,(1+\epsilon )R))}+C_{1}\epsilon {\left\| {\partial v}\right\| }_{L^{r}(B_{e}(0,(1+\epsilon )R))}+\cdot \cdot \cdot \\&+\,C_{k-1}\epsilon {\left\| {\partial ^{k-1}v}\right\| }_{L^{r}(B_{e}(0,(1+\epsilon )R))}, \end{aligned}$$

and

$$\begin{aligned} \displaystyle \ {\left\| {\nabla u}\right\| }_{L^{r}(B(x,R))}\le (1+C\epsilon ){\left\| {\partial v}\right\| }_{L^{r}(B_{e}(0,(1+\epsilon )R))}. \end{aligned}$$

We also have the reverse estimates

$$\begin{aligned} \displaystyle \ {\left\| {\partial ^{k}v}\right\| }_{L^{r}(B_{e}(0,(1-\epsilon )R))}\le & {} {\left\| {\nabla ^{k}v}\right\| }_{L^{r}(B_{e}(0,(1+\epsilon )R))}+C_{1}\epsilon {\left\| {\nabla v}\right\| }_{L^{r}(B_{e}(0,(1+\epsilon )R))}+\cdot \cdot \cdot \\&\displaystyle +\,C_{k-1}\epsilon {\left\| {\nabla ^{k-1}v}\right\| }_{L^{r}(B_{e}(0,(1+\epsilon )R))}, \end{aligned}$$

and

$$\begin{aligned} \displaystyle \ {\left\| {\partial v}\right\| }_{L^{r}(B_{e}(0,(1-\epsilon )R))}\le (1+C\epsilon ){\left\| {\nabla u}\right\| }_{L^{r}(B(x,R))}. \end{aligned}$$

So, using that

$$\begin{aligned} \displaystyle \ {\left\| {u}\right\| }_{W^{k,r}(B(x,R))}={\left\| {\nabla ^{k}u}\right\| }_{L^{r}(B(x,R))}+\cdot \cdot \cdot +{\left\| {\nabla u}\right\| }_{L^{r}(B(x,R))}+{\left\| {u}\right\| }_{L^{r}(B(x,R))}, \end{aligned}$$

we get

$$\begin{aligned} \displaystyle \ {\left\| {u}\right\| }_{W^{k,r}(B(x,R))}^{r} &\!\le \!{\left\| {\partial ^{k}v}\right\| }_{L^{r}(B_{e}(0,(1+\epsilon )R))}+C_{2}\epsilon {\left\| {\partial ^{2}v}\right\| }_{L^{r}(B_{e}(0,(1+\epsilon )R))}+\cdot \cdot \cdot \\&\displaystyle +\quad C_{k-1}\epsilon {\left\| {\partial ^{k-1}v}\right\| }_{L^{r}(B_{e}(0,(1+\epsilon )R))}\!+\!(1+C\epsilon ){\left\| {\partial v}\right\| }_{L^{r}(B_{e}(0,(1+\epsilon )R))}\\&\displaystyle +\quad {\left\| {v}\right\| }_{L^{r}(B_{e}(0,(1+\epsilon )R))}\\ \displaystyle\le & {} (1+2\epsilon C){\left\| {v}\right\| }_{W^{k,r}(B_{e}(0,(1+\epsilon )R))}. \end{aligned}$$

Again all these estimates can be reversed so we also have

$$\begin{aligned} \displaystyle \ {\left\| {v}\right\| }_{W^{m,r}(B_{e}(0,(1-\epsilon )R))}\le (1+2C\epsilon ){\left\| {u}\right\| }_{W^{m,r}(B(x,R))}. \end{aligned}$$

This ends the proof of the lemma. \(\square \)

We have to study the behavior of the Sobolev embeddings w.r.t. the radius. Set \(\displaystyle B_{R}:=B_{e}(0,R).\)

Lemma 7.6

We have, with \(\displaystyle t=S_{m}(r),\)

$$\begin{aligned} \displaystyle \forall R,\ 0<R\le 1,\ \forall u\in W^{m,r}(B_{R}),\ {\left\| {u}\right\| }_{L^{t}(B_{R})}\le CR^{-m}\ {\left\| {u}\right\| }_{W^{m,r}(B_{R})} \end{aligned}$$

the constant C depending only on \(\displaystyle n,\ r.\)

Proof

Start with \(\displaystyle R=1,\) and then we have by Sobolev embeddings with \(\displaystyle t=S_{m}(r),\)

$$\begin{aligned} \forall v\in W^{m,r}(B_{1}),\ {\left\| {v}\right\| }_{L^{t}(B_{1})}\le C{\left\| {v}\right\| }_{W^{m,r}(B_{1})}, \end{aligned}$$
(7.3)

where \(\displaystyle C\) depends only on n and \(\displaystyle r.\) For \(\displaystyle u\in W^{m,r}(B_{R})\) we set

$$\begin{aligned} \displaystyle \forall x\in B_{1},\ y:=Rx\in B_{R},\ v(x):=u(y). \end{aligned}$$

Then we have

$$\begin{aligned} \displaystyle \partial v(x)= & {} \partial u(y){\times }\frac{\partial y}{\partial x}=R\partial u(y);\\ \displaystyle \partial ^{2}v(x)= & {} \partial ^{2}u(y){\times }\left( \frac{\partial y}{\partial x}\right) ^{2}=R^{2}\partial ^{2}u(y);\ ...\ ;\\ \displaystyle \partial ^{m}v(x)= & {} \partial ^{m}u(y){\times }\left( \frac{\partial y}{\partial x}\right) ^{m}=R^{m}\partial ^{m}u(y). \end{aligned}$$

So we get, because the Jacobian for this change of variables is \(\displaystyle R^{-n},\)

$$\begin{aligned} \displaystyle \ {\left\| {\partial v}\right\| }_{L^{r}(B_{1})}^{r}=\int _{B_{1}}{\left| {\partial v(x)}\right| ^{r}dm(x)}=\int _{B_{R}}{\left| {\partial u(y)}\right| ^{r}\frac{R^{r}}{R^{n}}dm(x)}=R^{r-n}{\left\| {\partial u}\right\| }_{L^{r}(B_{R})}^{r}. \end{aligned}$$

So

$$\begin{aligned} {\left\| {\partial u}\right\| }_{L^{r}(B_{R})}=R^{-1+n/r}{\left\| {\partial v}\right\| }_{L^{r}(B_{1})}. \end{aligned}$$
(7.4)

The same way we get

$$\begin{aligned} {\left\| {\partial ^{m}u}\right\| }_{L^{r}(B_{R})}=R^{-m+n/r}{\left\| {\partial ^{m}v}\right\| }_{L^{r}(B_{1})} \end{aligned}$$
(7.5)

and of course \(\displaystyle \ {\left\| {u}\right\| }_{L^{r}(B_{R})}=R^{n/r}{\left\| {v}\right\| }_{L^{r}(B_{1})}.\)

So with 7.3 we get

$$\begin{aligned} {\left\| {u}\right\| }_{L^{t}(B_{R})}=R^{n/t}{\left\| {v}\right\| }_{L^{t}(B_{1})}\le CR^{n/t}{\left\| {v}\right\| }_{W^{m,r}(B_{1})}. \end{aligned}$$
(7.6)

But

$$\begin{aligned} \displaystyle \ {\left\| {u}\right\| }_{W^{m,r}(B_{R})}:={\left\| {u}\right\| }_{L^{r}(B_{R})}+{\left\| {\partial u}\right\| }_{L^{r}(B_{R})}+\cdot \cdot \cdot +{\left\| {\partial ^{m}u}\right\| }_{L^{r}(B_{R})}, \end{aligned}$$

and

$$\begin{aligned} \displaystyle \ {\left\| {v}\right\| }_{W^{m,r}(B_{1})}:={\left\| {v}\right\| }_{L^{r}(B_{1})}+{\left\| {\partial v}\right\| }_{L^{r}(B_{1})}+\cdot \cdot \cdot +{\left\| {\partial ^{m}v}\right\| }_{L^{r}(B_{1})}, \end{aligned}$$

so

$$\begin{aligned} \displaystyle \ {\left\| {v}\right\| }_{W^{m,r}(B_{1})}:=R^{-n/r}{\left\| {u}\right\| }_{L^{r}(B_{R})}+R^{1-n/r}{\left\| {\partial u}\right\| }_{L^{r}(B_{R})}+\cdot \cdot \cdot +R^{m-n/r}{\left\| {\partial ^{m}u}\right\| }_{L^{r}(B_{R})}. \end{aligned}$$

Because we have \(\displaystyle R\le 1,\) we get

$$\begin{aligned} \displaystyle \ {\left\| {v}\right\| }_{W^{m,r}(B_{1})}\le & {} R^{-n/r}\big ({\left\| {u}\right\| }_{L^{r}(B_{R})}+{\left\| {\partial u}\right\| }_{L^{r}(B_{R})}+\cdot \cdot \cdot +{\left\| {\partial ^{m}u}\right\| }_{L^{r}(B_{R})}\big )\\= & {} R^{-n/r}{\left\| {u}\right\| }_{W^{m,r}(B_{R})}. \end{aligned}$$

Putting it in (7.6) we get

$$\begin{aligned} \displaystyle \ {\left\| {u}\right\| }_{L^{t}(B_{R})}\le CR^{n/t}{\left\| {v}\right\| }_{W^{m,r}(B_{1})}\le CR^{-n\left( \frac{1}{r}-\frac{1}{t}\right) }{\left\| {u}\right\| }_{W^{m,r}(B_{R})}. \end{aligned}$$

But, because \(\displaystyle t=S_{m}(r),\) we get \(\displaystyle (\frac{1}{r}-\frac{1}{t})=\frac{m}{n}\) and

$$\begin{aligned} \displaystyle \ {\left\| {u}\right\| }_{L^{t}(B_{R})}\le CR^{-m}{\left\| {u}\right\| }_{W^{m,r}(B_{R})}. \end{aligned}$$

The constant C depends only on \(\displaystyle n,r.\) The proof is complete. \(\square \)

Lemma 7.7

Let \(x\in M\) and \(\displaystyle B(x,R)\) be a \(\epsilon \) admissible ball; we have, with \(\displaystyle t=S_{m}(r),\)

$$\begin{aligned} \displaystyle \forall u\in W^{m,r}(B(x,R)),\ {\left\| {u}\right\| }_{L^{t}(B(x,R))}\le CR^{-m}\ {\left\| {u}\right\| }_{W^{m,r}(B(x,R))}, \end{aligned}$$

the constant \(\displaystyle C\) depending only on \(\displaystyle n,\ r\), and \(\displaystyle \epsilon .\)

Proof

This is true in \({\mathbb {R}}^{n}\) by Lemma 7.6 so we can apply the comparison Lemma 7.5. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amar, E. The LIR Method. \(L^{r}\) Solutions of Elliptic Equation in a Complete Riemannian Manifold. J Geom Anal 29, 2565–2599 (2019). https://doi.org/10.1007/s12220-018-0086-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-0086-3

Keywords

Mathematics Subject Classification

Navigation