Skip to main content
Log in

A Constrained Optimization Problem for the Fourier Transform: Quantitative Analysis

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Among functions f majorized by indicator functions \(1_E\), which functions have maximal ratio \(\Vert {\widehat{f}}\Vert _q/|E|^{1/p}\)? We establish a quantitative answer to this question for exponents q sufficiently close to even integers, building on previous work proving the existence of such maximizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckner, W.: Inequalities in Fourier analysis. Ann. Math. (2) 102(1), 159–182 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bianchi, G., Egnell, H.: A note on the Sobolev inequality. J. Funct. Anal. 100(1), 1824 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boas, R .P.: Entire Functions. Academic Press, New York (1954)

    MATH  Google Scholar 

  4. Burchard, A.: Cases of equality in the Riesz rearrangement inequality. Ann. Math. (2) 143(3), 499–527 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S., Frank, R.L., Weth, T.: Remainder terms in the fractional Sobolev inequality. Indiana Univ. Math. J. 62(4), 1381–1397 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christ, M.: A sharpened Riesz-Sobolev inequality, arXiv:1706.02007, (2017)

  7. Christ, M.: Near-extremizers of Young’s inequality for \(R^d\) , math.CA arXiv:1112.4875, to appear, Rev. Mat. Iberoamericana

  8. Christ, M.: A sharpened Hausdorff-Young inequality, arXiv:1406.1210, (2014)

  9. Christ, M.: On an extremization problem concerning Fourier coefficients, arXiv:1506.00153, (2015)

  10. Cianchi, A., Fusco, N., Maggi, F., Pratelli, A.: The sharp Sobolev inequality in quantitative form. J. Eur. Math. Soc. (JEMS) 11(5), 1105–1139 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Figalli, A., Maggi, F., Pratelli, A.: A mass transportation approach to quantitative isoperimetric inequalities. Ann. Inst. H. Poincaré Anal. Non linéare 26(6), 2511–2519 (2009)

    Article  MATH  Google Scholar 

  12. Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann. Math. (2) 168(3), 941–980 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frank, R.L., Lieb, E.H.: Sharp constants in several inequalities on the Heisenberg group. Ann. Math. 176(2), 349–381 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Lieb, E.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. (2) 118(2), 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lieb, E.: Gaussian kernels have only Gaussian maximizers. Invent. Math. 102, 179–208 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maldague, D.: A constrained optimization problem for the Fourier transform: existence of extremizers, arXiv:1802.01743, (2017)

  17. Talenti, G.: Best constants in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Maldague.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maldague, D. A Constrained Optimization Problem for the Fourier Transform: Quantitative Analysis. J Geom Anal 29, 1259–1301 (2019). https://doi.org/10.1007/s12220-018-0038-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-0038-y

Keywords

Mathematics Subject Classification

Navigation