Skip to main content
Log in

Trace minmax functions and the radical Laguerre–Pólya class

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

We classify functions \(f:(a,b)\rightarrow \mathbb {R}\) which satisfy the inequality

$$\begin{aligned} {\text {tr}}f(A)+f(C)\ge {\text {tr}}f(B)+f(D) \end{aligned}$$

when \(A\le B\le C\) are self-adjoint matrices, \(D= A+C-B\), the so-called trace minmax functions. (Here \(A\le B\) if \(B-A\) is positive semidefinite, and f is evaluated via the functional calculus.) A function is trace minmax if and only if its derivative analytically continues to a self-map of the upper half plane. The negative exponential of a trace minmax function \(g=e^{-f}\) satisfies the inequality

$$\begin{aligned} \det g(A) \det g(C)\le \det g(B) \det g(D) \end{aligned}$$

for ABCD as above. We call such functions determinant isoperimetric. We show that determinant isoperimetric functions are in the “radical” of the Laguerre–Pólya class. We derive an integral representation for such functions which is essentially a continuous version of the Hadamard factorization for functions in the Laguerre–Pólya class. We apply our results to give some equivalent formulations of the Riemann hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhatia, R.: Matrix Analysis. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  2. Carlen, E.: Trace inequalities and quantum entropy: an introductory course. In: Entropy and the Quantum, volume 529 of Contemp. Math., pp. 73–140. American Mathematical Society, Providence (2010)

  3. Carlen, E.A., Frank, R.L., Lieb, E.H.: Some operator and trace function convexity theorems. Linear Algebra Appl. 490, 174–185 (2016)

    Article  MathSciNet  Google Scholar 

  4. de Branges, L.: Hilbert Spaces of Entire Functions. Prentice-Hall, London (1968)

    MATH  Google Scholar 

  5. de Branges, L.: The convergence of Euler products. J. Funct. Anal. 107(1), 122–210 (1992)

    Article  MathSciNet  Google Scholar 

  6. Griffin, M., Ono, K., Rolen, L., Zagier, D.: Jensen polynomials for the Riemann zeta function and other sequences. Proc. Natl. Acad. Sci. 116(23), 11103–11110 (2019)

    Article  MathSciNet  Google Scholar 

  7. Griffin, M.J., Ono, K., Rolen, L., Thorner, J., Tripp, Z., Wagner, I.: Number Theory, Jensen Polynomials for the Riemann Xi Function. arXiv (2019)

  8. Guionnet, A.: Large Random Matrices. Lecture Notes in Mathematics, vol. 1957. Springer, Berlin (2009)

    Google Scholar 

  9. Hansen, F.: Trace functions with applications in quantum physics. J. Stat. Phys. 154, 807–818 (2014)

    Article  MathSciNet  Google Scholar 

  10. Horn, A.: Eigenvalues of sums of Hermitian matrices. Pac. J. Math. 12, 225–241 (1962)

    Article  MathSciNet  Google Scholar 

  11. Kaltenbäck, M., Woracek, H.: Pólya class theory for Hermite-Biehler functions of finite order. J. Lond. Math. Soc. 68(2), 338–354 (2003)

    Article  Google Scholar 

  12. Klep, I., McCullough, S.A., Nelson, C.S.: On trace-convex noncommutative polynomials. Michigan Math. J. 65(1), 131–146 (2016)

    Article  MathSciNet  Google Scholar 

  13. Knutson, A., Tao, T.: The honeycomb model of $gl_n(\mathbb{C})$ tensor products I: proof of the saturation conjecture. J. Am. Math. Soc. 12(4), 1055–1090 (1999)

    Article  Google Scholar 

  14. Kraus, F.: Über konvexe Matrixfunktionen. Math. Z. 41, 18–42 (1936)

    Article  MathSciNet  Google Scholar 

  15. Lax, P.: Functional Analysis. Wiley, New York (2002)

    MATH  Google Scholar 

  16. Löwner, K.: Über monotone Matrixfunktionen. Math. Z. 38, 177–216 (1934)

    Article  MathSciNet  Google Scholar 

  17. Li, X.-J.: The positivity of a sequence of numbers and the Riemann hypothesis. J. Number Theory 65(2), 325–333 (1997)

    Article  MathSciNet  Google Scholar 

  18. Nevanlinna, R.: Asymptotisch Entwicklungen beschränkter Funktionen und das Stieltjessche Momentproblem. Ann. Acad. Sci. Fenn. Ser. A 18, 52 (1922)

    Google Scholar 

  19. Pólya, G.P: Uber die algebraisch-funktionentheoretischen Untersuchüngen von J. L. W. V. Jensen. Kgl. Danske Vid. Sel. Math.-Fys. Medd. 7, 3–33 (1928)

  20. Pólya, G.: Über Annäherung durch Polynome mit lauter reellen Wurzeln. Rendiconti del Circolo Matematico di Palermo 1884–1940(36), 279–295 (1913)

    Article  Google Scholar 

  21. Szász, O.: On sequences of polynomials and the distribution of their zeros. Bull. Am. Math. Soc. 49(6), 377–383 (1943)

    Article  MathSciNet  Google Scholar 

  22. Weyl, H.: Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). Math. Ann. 71, 441–479 (1912)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Pascoe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. E. Pascoe is supported by NSF Analysis Grant DMS-1953963

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascoe, J.E. Trace minmax functions and the radical Laguerre–Pólya class. Res Math Sci 8, 9 (2021). https://doi.org/10.1007/s40687-021-00248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-021-00248-5

Mathematics Subject Classification

Navigation