Skip to main content

Advertisement

Log in

Electric-field-controlled Droplet Sorting in a Bifurcating Channel

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

To study the electric-field-controlled droplet sorting in the microfluidic chip, an unsteady numerical model of droplet sorting controlled by a nonuniform electric field is developed based on the coupled phase-field method and electric current model. The results indicate that both the shape and trajectory of the droplet are dependent on the permittivity ratio (S = εoi) and electric conductivity ratio (R = κio) between the fluids when flowing through the electric field. The behaviors of the droplet are summarized in a sorting regime diagram according to the droplet size (r*) and electric Euler number (Eue). In the case of RS < 1, a small droplet (r* ≤ 0.25) flowing through the horizontal channel is observed under the condition of weak electric intensity (Eue ≥ 1 × 10–4). As Eue decreases, the sorting regime of the droplet transits to downward deflection. Pinning on the grounded channel wall occurs when Eue ≤ 7.21 × 10–5. Eventually, droplet breakup is triggered (r* ≥ 0.3, Eue ≤ 1.17 × 10–4). In the case of RS > 1, droplets are observed flowing through the horizontal channel in the sorting process of both small and large droplets at large Eue (r* ≤ 0.25, Eue ≥ 4.9 × 10–4 and r* ≥ 0.3, Eue ≥ 2.44 × 10–4). A strong electric intensity (Eue ≤ 2.44 × 10–4) contributes to the breakup regime of large droplets (r* ≥ 0.3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  • Ahn, B., Lee, K., Panchapakesan, R., Oh, K.W.: On-demand electrostatic droplet charging and sorting. Biomicrofluidics 5, 024113 (2011)

  • Arias, S., Montlaur, A.: Influence of contact angle boundary condition on CFD simulation of T-Junction. Microgravity Sci. Tec. 30, 435–443 (2018)

    Article  Google Scholar 

  • Behjatian, A., Esmaeeli, A.: Electrohydrodynamics of a compound drop. Phys. Rev. E 88, 033012 (2013)

  • Chen, Y., Deng, Z.: Hydrodynamics of a droplet passing through a microfluidic T-junction. J. Fluid Mech. 819, 401–434 (2017)

    Article  MathSciNet  Google Scholar 

  • Chen, Y., Gao, W., Zhang, C., Zhao, Y.: Three-dimensional splitting microfluidics. Lab. Chip. 16, 1332–1339 (2016)

    Article  Google Scholar 

  • Chen, Y., Liu, X., Shi, M.: Hydrodynamics of double emulsion droplet in shear flow. Appl. Phys. Lett. 102, 051609 (2013)

  • Chen, Y., Liu, X., Zhao, Y.: Deformation dynamics of double emulsion droplet under shear. Appl. Phys. Lett. 106, 141601 (2015)

  • De, G.S., Mazur, P.: Non-equilibrium thermodynamics. Courier Corporation (1962)

  • Esmaeeli, A., Behjatian, A.: Transient electrohydrodynamics of a liquid drop at finite Reynolds numbers. J. Fluid Mech. 893, A26 (2020)

    Article  MathSciNet  Google Scholar 

  • Feng, J.Q., Scott, T.C.: A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field. J. Fluid Mech. 311, 289–326 (1996)

    Article  Google Scholar 

  • Ganchenko, G., Frants, E., Shelistov, V., Demekhin, E.: The movement of an ion-exchange microparticle in a weak external electric field. Microgravity Sci. Tec. 30, 411–417 (2018)

    Article  Google Scholar 

  • Gao, W., Yu, C., Yao, F.: Droplets breakup via a splitting microchannel. Chin. Phys. B 29, 054702 (2020)

  • Guo, F., Ji, X.-H., Liu, K., He, R.-X., Zhao, L.-B., Guo, Z.-X., Liu, W., Guo, S.-S., Zhao, X.-Z.: Droplet electric separator microfluidic device for cell sorting. Appl. Phys. Lett. 96, 193701 (2010)

  • Hua, J., Lim, L.K., Wang, C.-H.: Numerical simulation of deformation/motion of a drop suspended in viscous liquids under influence of steady electric fields. Phys. Fluids 20, 113302 (2008)

  • Huh, D., Bahng, J.H., Ling, Y., Wei, H.-H., Kripfgans, O.D., Fowlkes, J.B., Grotberg, J.B., Takayama, S.: Gravity–driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal. Chem. 79, 1369–1376 (2007)

    Article  Google Scholar 

  • Jacqmin, D.: Calculation of two-phase navier-stokes flows using phase-field modeling. J. Comput. Phys. 155, 96–127 (1999)

    Article  MathSciNet  Google Scholar 

  • Kuznetsov, G., Zhdanova, A., Voitkov, I., Strizhak, P.: Disintegration of free-falling liquid droplets, jets, and arrays in air. Microgravity Sci. Tec. 34, 12 (2022)

    Article  Google Scholar 

  • Li, D., Wang, T., Chen, S., Liu, Q., Xie, Y., Liu, C.: Experimental investigation on droplet deformation and breakup under uniform DC electric field. Microgravity Sci. Tec. 32, 837–845 (2020)

    Article  Google Scholar 

  • Lin, Y., Skjetne, P., Carlson, A.: A phase field model for multiphase electro-hydrodynamic flow. Int. J. Multiphase. Flow. 45, 1–11 (2012)

    Article  Google Scholar 

  • Link, D.R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z.D., Cristobal, G., Marquez, M., Weitz, D.A.: Electric control of droplets in microfluidic devices. Angew. Chem. Int. Ed. 45, 2556–2560 (2006)

    Article  Google Scholar 

  • Liu, E.Y., Jung, S., Weitz, D.A., Yi, H., Choi, C.-H.: High-throughput double emulsion-based microfluidic production of hydrogel microspheres with tunable chemical functionalities toward biomolecular conjugation. Lab. Chip. 18, 323–334 (2018)

    Article  Google Scholar 

  • Liu, X., Hao, G., Li, B., Chen, Y.: Experimental study on the electrohydrodynamic deformation of droplets in a combined DC electric field and shear flow field. Fundam. Res. (2021)

  • Niu, X., Zhang, M., Peng, S., Wen, W., Sheng, P.: Real-time detection, control, and sorting of microfluidic droplets. Biomicrofluidics 1, 44101–44101 (2007)

    Article  Google Scholar 

  • Quan, Y.-Y., Jiang, P.-G., Zhang, L.-Z.: Development of fractal ultra-hydrophobic coating films to prevent water vapor dewing and to delay frosting. Fractals 22, 1440002 (2014)

    Article  Google Scholar 

  • Santra, S., Das, S., Chakraborty, S.: Electric field-induced pinch-off of a compound droplet in Poiseuille flow. Phys. Fluids 31, 062004 (2019a)

  • Santra, S., Sen, D., Das, S., Chakraborty, S.: Electrohydrodynamic interaction between droplet pairs in a confined shear flow. Phys. Fluids 31 (2019b)

  • Saville, D.A.: Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Ann. Rev. Fluid Mech. 29, 27–64 (2003)

    Article  MathSciNet  Google Scholar 

  • Sciambi, A., Abate, A.R.: Accurate microfluidic sorting of droplets at 30 kHz. Lab Chip 15, 47–51 (2015)

    Article  Google Scholar 

  • Sun, F., Li, T.-T., Zhang, X., Shiu, B.-C., Zhang, Y., Ren, H.-T., Peng, H.-K., Lin, J.-H., Lou, C.-W.: In situ growth polydopamine decorated polypropylen melt-blown membrane for highly efficient oil/water separation. Chemosphere 254, 126873 (2020)

  • Tan, Y.-C., Fisher, J.S., Lee, A.I., Cristini, V., Lee, A.P.: Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab. Chip. 4, 292–298 (2004)

    Article  Google Scholar 

  • Taylor, G.I.: Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proceedings of the Royal Society of London, Series A. Math. Phys. Sci. 291, 159–166 (1966)

  • Wang, J.-X., Birbarah, P., Docimo, D., Yang, T., Alleyne, A.G., Miljkovic, N.: Nanostructured jumping-droplet thermal rectifier. Phys. Rev. E 103, 023110 (2021a)

  • Wang, J.-X., Guo, W., Xiong, K., Wang, S.-N.: Review of aerospace-oriented spray cooling technology. Prog. Aerosp. Sci. 116, 100635 (2020)

  • Wang, J.-X., Li, Y.-Z., Li, G.-C., Xiong, K., Ning, X.: Investigation of a gravity-immune chip-level spray cooling for thermal protection of laser-based wireless power transmission system. Int. J. Heat Mass Tran. 114, 715–726 (2017a)

    Article  Google Scholar 

  • Wang, J.-X., Li, Y.-Z., Zhong, M.-L., Zhang, H.-S.: Investigation on a gas-atomized spray cooling upon flat and micro-structured surfaces. Int. J. Therm. Sci. 161, 106751 (2021b)

  • Wang, J., Gao, W., Zhang, H., Zou, M., Chen, Y., Zhao, Y.: Programmable wettability on photocontrolled graphene film. Sci. Adv. 4, eaat7392 (2018)

  • Wang, J., Sun, L., Zou, M., Gao, W., Liu, C., Shang, L., Gu, Z., Zhao, Y.: Bioinspired shape-memory graphene film with tunable wettability. Sci. Adv. 3, e1700004 (2017b)

  • Wang, J., Wang, X., Tai, M., Guan, J.: Oriented shift and inverse of the daughter droplet due to the asymmetry of grand–daughter droplets of multiple emulsions in a symmetric flow field. Appl. Phys. Lett. 108, 021603 (2016)

  • Wehking, J.D., Chew, L., Kumar, R.: Droplet deformation and manipulation in an electrified microfluidic channel. Appl. Phys. Lett. 103, 4163 (2013)

    Article  Google Scholar 

  • Yao, L., Zeng, Z., Liu, H., Zhang, L.: Transitions of the thermocapillary flow in a liquid bridge under the effect of non-uniform rotating magnetic field. Microgravity Sci. Tec. 33, 69 (2021)

    Article  Google Scholar 

  • Yeo, L.Y., Friend, J.R.: Surface acoustic wave microfluidics. Ann. Rev. Fluid Mech. 46, 379–406 (2014)

    Article  MathSciNet  Google Scholar 

  • Yue, P., Zhou, C., Feng, J.J., Ollivier-Gooch, C.F., Hu, H.H.: Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J. Comput. Phys. 219, 47–67 (2006)

    Article  MathSciNet  Google Scholar 

  • Zhao, X., Yuan, Z., Yildirimer, L., Zhao, J., Lin, Z.Y., Cao, Z., Pan, G., Cui, W.: Tumor-triggered controlled drug release from electrospun fibers using inorganic caps for inhibiting cancer relapse. Small 11, 4284–4291 (2015)

    Article  Google Scholar 

  • Zhou, B., Cai, P., Chen, Y.: Interfacial mass transfer of water for fluorobenzene/aqueous solution system in double emulsion. Int. J. Heat Mass Transfer 145, 118690 (2019)

  • Zhu, Z.-Q., Wang, Y., Liu, Q.-S., Xie, J.-C.: Influence of bond number on behaviors of liquid drops deposited onto solid substrates. Microgravity Sci. Tec. 24, 181–188 (2012)

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the supports provided by National Natural Science Foundation of China (No. 52036006 and 51725602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangyu Wu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, G., Li, L., Wu, L. et al. Electric-field-controlled Droplet Sorting in a Bifurcating Channel. Microgravity Sci. Technol. 34, 25 (2022). https://doi.org/10.1007/s12217-022-09944-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-022-09944-5

Keywords

Navigation